Learn R Programming

aplms (version 0.1.0)

influence.aplms: local influence analysis of the object `aplms()`

Description

Takes a fitted `aplms` object and outputs some diagnostic information about the fitting procedure and results. Returns the conformal normal curvature of the fitted `aplms` model object. The `case-weight`, `dispersion`, `response`, `explanatory`, and `corAR` perturbations are available.

Usage

# S3 method for aplms
influence(
  model,
  perturbation = c("case-weight", "dispersion", "response", "explanatory", "corAR"),
  part = TRUE,
  ...
)

Value

A list object containing the conformal normal curvature of the specified perturbations.

Arguments

model

an object with the result of fitting additive partial linear models with symmetric errors.

perturbation

A string vector specifying a perturbation scheme: `case-weight`, `dispersion`, `response`, `explanatory`, and `corAR`.

part

A logical value to indicate whether the influential analysis is performed for \(\gamma\), \(\phi\) and \(\rho\).

...

other arguments.

Examples

Run this code
data(temperature)
temperature.df = data.frame(temperature,time=1:length(temperature))
model<-aplms::aplms(temperature ~ 1,
                   npc=c("time"), basis=c("cr"),Knot=c(60),
                   data=temperature.df,family=Powerexp(k=0.3),p=1,
                   control = list(tol = 0.001,
                                  algorithm1 = c("P-GAM"),
                                  algorithm2 = c("BFGS"),
                                  Maxiter1 = 20,
                                  Maxiter2 = 25),
                   lam=c(10))
influence(model, perturbation = c("case-weight"))

Run the code above in your browser using DataLab