#Example 1
txns <- as(discrNumeric(datasets::iris, "Species")$Disc.data,"transactions")
appearance <- getAppearance(datasets::iris,"Species")
rules <- apriori(txns, parameter = list(confidence = 0.5,
support= 0.01, minlen= 2, maxlen= 4),appearance = appearance)
prune(rules,txns, appearance$rhs)
inspect(rules)
#Example 2
utils::data(Adult) # this dataset comes with the arules package
classitems <- c("income=small","income=large")
rules <- apriori(Adult, parameter = list(supp = 0.3, conf = 0.5,
target = "rules"), appearance=list(rhs=classitems, default="lhs"))
# produces 25 rules
rulesP <- prune(rules,Adult,classitems)
rulesP@quality # inspect rule quality measured including the new additions
# Rules after data coverage pruning: 8
# Performing default rule pruning.
# Final rule list size: 6
Run the code above in your browser using DataLab