Learn R Programming

archivist (version 2.0.4)

Tags: Tags

Description

Tags are attributes of an artifact, i.e., a class, a name, names of artifact's parts, etc... The list of artifact tags vary across artifact's classes. To learn more about artifacts visit archivist-package.

Arguments

Details

Tags are attributes of an artifact. They can be the artifact's name, class or archiving date. Furthermore, for various artifact's classes more different Tags are available.

A Tag is represented as a string and usually has the following structure "TagKey:TagValue", e.g., "name:iris".

Tags are stored in the Repository. If data is extracted from an artifact then a special Tag, named relationWith is created. It specifies with which artifact this data is related to.

The list of supported artifacts which are divided thematically is presented below. The newest list is also available on archivist wiki on Github.

Regression Models

lm
  • name
  • class
  • coefname
  • rank
  • df.residual
  • date

summary.lm
  • name
  • class
  • sigma
  • df
  • r.squared
  • adj.r.squared
  • fstatistic
  • fstatistic.df
  • date

glmnet
  • name
  • class
  • dim
  • nulldev
  • npasses
  • offset
  • nobs
  • date

survfit
  • name
  • class
  • n
  • type
  • conf.type
  • conf.int
  • strata
  • date

Plots

ggplot
  • name
  • class
  • date
  • labelx
  • labely

trellis
  • date
  • name
  • class

Results of Agglomeration Methods

twins which is a result of agnes, diana or mona functions
  • date
  • name
  • class
  • ac

partition which is a result of pam, clara or fanny functions
  • name
  • class
  • memb.exp
  • dunn_coeff
  • normalized dunn_coeff
  • k.crisp
  • objective
  • tolerance
  • iterations
  • converged
  • maxit
  • clus.avg.widths
  • avg.width
  • date

lda
  • name
  • class
  • N
  • lev
  • counts
  • prior
  • svd
  • date

qda
  • name
  • class
  • N
  • lev
  • counts
  • prior
  • ldet
  • terms
  • date

Statistical Tests

htest
  • name
  • class
  • method
  • data.name
  • null.value
  • alternative
  • statistic
  • parameter
  • p.value
  • conf.int.
  • estimate
  • date

When none of above is specified, Tags are assigned by default

default
  • name
  • class
  • date

data.frame
  • name
  • class
  • date
  • varname

See Also

Functions using Tags are:

Other archivist: Repository, %a%, addHooksToPrint, addTagsRepo, aformat, ahistory, alink, aoptions, archivist-package, aread, asearch, asession, cache, copyLocalRepo, createLocalRepo, createMDGallery, deleteLocalRepo, getRemoteHook, getTagsLocal, loadFromLocalRepo, md5hash, restoreLibs, rmFromLocalRepo, saveToLocalRepo, searchInLocalRepo, setLocalRepo, shinySearchInLocalRepo, showLocalRepo, splitTagsLocal, summaryLocalRepo, zipLocalRepo

Examples

Run this code

## Not run: 
# # examples
# # data.frame object
# data(iris)
# exampleRepoDir <- tempfile()
# createLocalRepo(repoDir = exampleRepoDir)
# saveToLocalRepo( iris, repoDir=exampleRepoDir )
# showLocalRepo( exampleRepoDir, "tags" )
# deleteLocalRepo( exampleRepoDir, deleteRoot=TRUE )
# 
# # ggplot/gg object
# library(ggplot2)
# df <- data.frame(gp = factor(rep(letters[1:3], each = 10)),y = rnorm(30))
# library(plyr)
# ds <- ddply(df, .(gp), summarise, mean = mean(y), sd = sd(y))
# myplot123 <- ggplot(df, aes(x = gp, y = y)) +
#   geom_point() +  geom_point(data = ds, aes(y = mean),
#                              colour = 'red', size = 3)
# exampleRepoDir <- tempfile()
# createLocalRepo( repoDir = exampleRepoDir )
# saveToLocalRepo( myplot123, repoDir=exampleRepoDir )
# showLocalRepo( exampleRepoDir, "tags" )
# deleteLocalRepo( exampleRepoDir, deleteRoot=TRUE )
# 
# # lm object
# model <- lm(Sepal.Length~ Sepal.Width + Petal.Length + Petal.Width, 
#            data= iris)
# exampleRepoDir <- tempfile()
# createLocalRepo( repoDir = exampleRepoDir )
# asave( model, repoDir=exampleRepoDir )
# showLocalRepo( exampleRepoDir, "tags" )
# deleteLocalRepo( exampleRepoDir, TRUE )
# 
# # agnes (twins) object
# library(cluster)
# data(votes.repub)
# agn1 <- agnes(votes.repub, metric = "manhattan", stand = TRUE)
# exampleRepoDir <- tempfile()
# createLocalRepo( repoDir = exampleRepoDir )
# saveToLocalRepo( agn1, repoDir=exampleRepoDir )
# showLocalRepo( exampleRepoDir, "tags" )
# deleteLocalRepo( exampleRepoDir, TRUE )
# 
# # fanny (partition) object
# x <- rbind(cbind(rnorm(10, 0, 0.5), rnorm(10, 0, 0.5)),
#           cbind(rnorm(15, 5, 0.5), rnorm(15, 5, 0.5)),
#           cbind(rnorm( 3,3.2,0.5), rnorm( 3,3.2,0.5)))
# fannyx <- fanny(x, 2)
# exampleRepoDir <- tempfile()
# createLocalRepo( repoDir = exampleRepoDir )
# saveToLocalRepo( fannyx, repoDir=exampleRepoDir )
# showLocalRepo( exampleRepoDir, "tags" )
# deleteLocalRepo( exampleRepoDir, TRUE )
# 
# # lda object
# library(MASS)
# 
# Iris <- data.frame(rbind(iris3[,,1], iris3[,,2], iris3[,,3]),
#                    Sp = rep(c("s","c","v"), rep(50,3)))
# train <- c(8,83,115,118,146,82,76,9,70,139,85,59,78,143,68,
#            134,148,12,141,101,144,114,41,95,61,128,2,42,37,
#            29,77,20,44,98,74,32,27,11,49,52,111,55,48,33,38,
#            113,126,24,104,3,66,81,31,39,26,123,18,108,73,50,
#            56,54,65,135,84,112,131,60,102,14,120,117,53,138,5)
# lda1 <- lda(Sp ~ ., Iris, prior = c(1,1,1)/3, subset = train)
# exampleRepoDir <- tempfile()
# createLocalRepo( repoDir = exampleRepoDir )
# asave( lda1, repoDir=exampleRepoDir )
# showLocalRepo( exampleRepoDir, "tags" )
# deleteLocalRepo( exampleRepoDir, TRUE )
# 
# # qda object
# tr <- c(7,38,47,43,20,37,44,22,46,49,50,19,4,32,12,29,27,34,2,1,17,13,3,35,36)
# train <- rbind(iris3[tr,,1], iris3[tr,,2], iris3[tr,,3])
# cl <- factor(c(rep("s",25), rep("c",25), rep("v",25)))
# qda1 <- qda(train, cl)
# exampleRepoDir <- tempfile()
# createLocalRepo( repoDir = exampleRepoDir )
# saveToLocalRepo( qda1, repoDir=exampleRepoDir )
# showLocalRepo( exampleRepoDir, "tags" )
# deleteLocalRepo( exampleRepoDir, TRUE )
# 
# 
# # glmnet object
# library( glmnet )
# 
# zk=matrix(rnorm(100*20),100,20)
# bk=rnorm(100)
# glmnet1=glmnet(zk,bk)
# exampleRepoDir <- tempfile()
# createLocalRepo( repoDir = exampleRepoDir )
# saveToLocalRepo( glmnet1, repoDir=exampleRepoDir )
# showLocalRepo( exampleRepoDir, "tags" )
# deleteLocalRepo( exampleRepoDir, TRUE )
# 
# # trellis object
# require(stats)
# library( lattice)
# ## Tonga Trench Earthquakes
# 
# Depth <- equal.count(quakes$depth, number=8, overlap=.1)
# xyplot(lat ~ long | Depth, data = quakes)
# update(trellis.last.object(),
#        strip = strip.custom(strip.names = TRUE, strip.levels = TRUE),
#        par.strip.text = list(cex = 0.75),
#        aspect = "iso")
# 
# ## Examples with data from `Visualizing Data' (Cleveland, 1993) obtained
# ## from http://cm.bell-labs.com/cm/ms/departments/sia/wsc/
# 
# EE <- equal.count(ethanol$E, number=9, overlap=1/4)
# 
# ## Constructing panel functions on the run; prepanel
# trellis.plot <- xyplot(NOx ~ C | EE, data = ethanol,
#                        prepanel = function(x, y) prepanel.loess(x, y, span = 1),
#                        xlab = "Compression Ratio", ylab = "NOx (micrograms/J)",
#                        panel = function(x, y) {
#                          panel.grid(h = -1, v = 2)
#                          panel.xyplot(x, y)
#                          panel.loess(x, y, span=1)
#                        },
#                        aspect = "xy")
# exampleRepoDir <- tempfile()
# createLocalRepo( repoDir = exampleRepoDir )
# saveToLocalRepo( trellis.plot, repoDir=exampleRepoDir )
# showLocalRepo( exampleRepoDir, "tags" )
# deleteLocalRepo( exampleRepoDir, TRUE )
# 
# # htest object
# 
# x <- c(1.83,  0.50,  1.62,  2.48, 1.68, 1.88, 1.55, 3.06, 1.30)
# y <- c(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29)
# this.test <- wilcox.test(x, y, paired = TRUE, alternative = "greater")
# exampleRepoDir <- tempfile()
# createLocalRepo( repoDir = exampleRepoDir )
# saveToLocalRepo( this.test, repoDir=exampleRepoDir )
# showLocalRepo( exampleRepoDir, "tags" )
# deleteLocalRepo( exampleRepoDir, TRUE )
# 
# # survfit object
# library( survival )
# # Create the simplest test data set 
# test1 <- list(time=c(4,3,1,1,2,2,3), 
#               status=c(1,1,1,0,1,1,0), 
#              x=c(0,2,1,1,1,0,0), 
#              sex=c(0,0,0,0,1,1,1)) 
# # Fit a stratified model 
# myFit <-  survfit( coxph(Surv(time, status) ~ x + strata(sex), test1), data = test1  )
# exampleRepoDir <- tempfile()
# createLocalRepo( repoDir = exampleRepoDir )
# saveToLocalRepo( myFit , repoDir=exampleRepoDir )
# showLocalRepo( exampleRepoDir, "tags" )[,-3]
# deleteLocalRepo( exampleRepoDir, TRUE)
# 
# # origin of the artifacts stored as a name - chaining code
# library(dplyr)
# exampleRepoDir <- tempfile()
# createLocalRepo( repoDir = exampleRepoDir )
# data("hflights", package = "hflights")
# hflights %>%
#   group_by(Year, Month, DayofMonth) %>%
#   select(Year:DayofMonth, ArrDelay, DepDelay) %>%
#   saveToLocalRepo( exampleRepoDir, value = TRUE ) %>%
#   # here the artifact is stored but chaining is not finished
#   summarise(
#     arr = mean(ArrDelay, na.rm = TRUE),
#     dep = mean(DepDelay, na.rm = TRUE)
#   ) %>%
#   filter(arr > 30 | dep > 30) %>%
#   saveToLocalRepo( exampleRepoDir ) 
#   # chaining code is finished and after last operation the 
#   # artifact is stored
# showLocalRepo( exampleRepoDir, "tags" )[,-3]
# showLocalRepo( exampleRepoDir )
# deleteLocalRepo( exampleRepoDir, TRUE)
# 
# rm( exampleRepoDir )
# ## End(Not run)

Run the code above in your browser using DataLab