# Train ARF and estimate leaf parameters
arf <- adversarial_rf(iris)
psi <- forde(arf, iris)
# Estimate average log-likelihood
ll <- lik(psi, iris, arf = arf, log = TRUE)
mean(ll)
# Identical but slower
ll <- lik(psi, iris, log = TRUE)
mean(ll)
# Partial evidence query
lik(psi, query = iris[1, 1:3])
# Condition on Species = "setosa"
evi <- data.frame(Species = "setosa")
lik(psi, query = iris[1, 1:3], evidence = evi)
# Condition on Species = "setosa" and Petal.Width > 0.3
evi <- data.frame(Species = "setosa",
Petal.Width = ">0.3")
lik(psi, query = iris[1, 1:3], evidence = evi)
if (FALSE) {
# Parallelization with doParallel
doParallel::registerDoParallel(cores = 4)
# ... or with doFuture
doFuture::registerDoFuture()
future::plan("multisession", workers = 4)
}
Run the code above in your browser using DataLab