Learn R Programming

arf3DS4 (version 2.5-4)

mcpCorrect: Calculate Multiple Comparison Corrections

Description

mcpCorrect calculates three types of multiple comparison corrections: 'uncorrected', 'bonferroni', and 'False Discovery Rate (FDR)'. mcpCorrect assumes the data are t-values.

Usage

mcpCorrect(fmridata, type = c("uncorrected", "bonferroni", "FDR"), 
 alpha = 0.05, q = 0.05, cv = 1, df = 100, sig.steps = 1, adj.n = T)

Arguments

fmridata
An object of class ".fmri.data" (see fmri.data).
type
Type of correction ('uncorrected', 'bonferroni', 'FDR')
alpha
Nominal alpha level.
q
q parameter for FDR.
cv
Cv parameter for FDR.
df
Degrees of freedom of the t-values.
sig.steps
Number of steps to divide p-values in (for visualization).
adj.n
Use only brain voxels when correcting?

Value

  • Returns two object of class "fmri.data", one with suprathreshold voxels masked, one with only sigificant voxels used for overlay images.

See Also

fmri.data