y1 <- rnorm(1000,50,23)
y2 <- rbinom(1000,1,prob=0.72)
x1 <- rnorm(1000,50,2)
x2 <- rbinom(1000,1,prob=0.63)
x3 <- rpois(1000, 2)
x4 <- runif(1000,40,100)
x5 <- rbeta(1000,2,2)
longnames <- c("a long name01","a long name02","a long name03",
"a long name04","a long name05")
fit1 <- lm(y1 ~ x1 + x2 + x3 + x4 + x5)
fit2 <- glm(y2 ~ x1 + x2 + x3 + x4 + x5,
family=binomial(link="logit"))
# plot 1
par (mfrow=c(2,2), mar=c(3,3,4,1), mgp=c(2,0.25,0), tcl=-0.2)
coefplot(fit1, xlab="", ylab="", main="Regression Estimates")
coefplot(fit2, col.pts="blue",
xlab="", ylab="", main="Regression Estimates")
# plot 2
par (mar=c(2,8,2,0.5))
coefplot(fit1, longnames, intercept=TRUE, CI=1,
xlab="", ylab="", main="Regression Estimates")
# plot 3
par (mar=c(2,2,2,2))
coefplot(fit2, vertical=FALSE, var.las=1,
xlab="", ylab="", main="Regression Estimates")
# plot 4: comparison to show bayesglm works better than glm
n <- 100
x1 <- rnorm (n)
x2 <- rbinom (n, 1, .5)
b0 <- 1
b1 <- 1.5
b2 <- 2
y <- rbinom (n, 1, invlogit(b0+b1*x1+b2*x2))
y <- ifelse (x2==1, 1, y)
x1 <- rescale(x1)
x2 <- rescale(x2, "center")
M1 <- glm (y ~ x1 + x2, family=binomial(link="logit"))
display (M1)
M2 <- bayesglm (y ~ x1 + x2, family=binomial(link="logit"))
display (M2)
## stacked plot
par(mar=c(2,5,3,1), mgp=c(2,0.25,0), oma=c(0,0,2,0), tcl=-0.2)
coefplot(M2, xlim=c(-1,5), intercept=TRUE, xlab="", ylab="")
points(coef(M1), c(3:1)-0.1, col="red", pch=19)
segments(coef(M1) + se.coef(M1), c(3:1)-0.1,
coef(M1) - se.coef(M1), c(3:1)-0.1, lwd=2, col="red")
segments(coef(M1) + 2*se.coef(M1), c(3:1)-0.1,
coef(M1) - 2*se.coef(M1), c(3:1)-0.1, col="red")
mtext("Coefficients", side=3, at=0.1, outer=TRUE)
mtext("Estimate", side=3, at=0.6, outer=TRUE)
## arrayed plot
par(mfrow=c(1,2), mar=c(2,5,5,1), mgp=c(2,0.25,0), tcl=-0.2)
x.scale <- c(0, 7.5) # fix x.scale for comparison
coefplot(M1, xlim=x.scale, main="glm", intercept=TRUE,
xlab="", ylab="")
coefplot(M2, xlim=x.scale, main="bayesglm", intercept=TRUE,
xlab="", ylab="")
# plot 5: the ordered logit model from polr
par (mar=c(3,8,4,1), mgp=c(2,0.25,0), tcl=-0.2)
M3 <- polr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
coefplot(M3, xlab="", ylab="", main="polr")
M4 <- bayespolr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
coefplot(M4, xlab="", ylab="", main="bayespolr")
# plot 6: plot bugs
par (mar=c(3,8,4,1), mgp=c(2,0.25,0), tcl=-0.2)
M5 <- lmer(Reaction ~ Days + (1|Subject), sleepstudy)
M5.sim <- mcsamp(M5)
coefplot(M5.sim, xlab="", ylab="", main="BUGS model")
# plot 7: plot coefficients & sds vectors
par (mar=c(3,4,4,4), mgp=c(2,0.25,0), tcl=-0.2)
coef.vect <- c(0.2, 1.4, 2.3, 0.5)
sd.vect <- c(0.12, 0.24, 0.23, 0.15)
longnames <- c("var1", "var2", "var3", "var4")
coefplot (coef.vect, sd.vect, longnames,
xlab="", ylab="", main="Regression Estimates")
coefplot (coef.vect, sd.vect, longnames,
vertical=FALSE, var.las=1, las=2,
xlab="", ylab="", main="Regression Estimates")
Run the code above in your browser using DataLab