
Last chance! 50% off unlimited learning
Sale ends in
se.coef (object)
se.fixef (object)
se.ranef (object)
## S3 method for class 'lm':
se.coef(object)
## S3 method for class 'glm':
se.coef(object)
## S3 method for class 'mer':
se.coef(object)
se.coef
gives lists of standard errors for coef
,
se.fixef
gives a vector of standard errors for fixef
and
se.ranef
gives a list of standard errors for ranef
.se.coef
extracts standard errors from objects
returned by modeling functions.
se.fixef
extracts standard errors of the fixed effects
from objects returned by lmer and glmer functions.
se.ranef
extracts standard errors of the random effects
from objects returned by lmer and glmer functions.display
,
coef
,
sigma.hat
,# Here's a simple example of a model of the form, y = a + bx + error,
# with 10 observations in each of 10 groups, and with both the
# intercept and the slope varying by group. First we set up the model and data.
group <- rep(1:10, rep(10,10))
mu.a <- 0
sigma.a <- 2
mu.b <- 3
sigma.b <- 4
rho <- 0
Sigma.ab <- array (c(sigma.a^2, rho*sigma.a*sigma.b,
rho*sigma.a*sigma.b, sigma.b^2), c(2,2))
sigma.y <- 1
ab <- mvrnorm (10, c(mu.a,mu.b), Sigma.ab)
a <- ab[,1]
b <- ab[,2]
#
x <- rnorm (100)
y1 <- rnorm (100, a[group] + b[group]*x, sigma.y)
y2 <- rbinom(100, 1, prob=invlogit(a[group] + b*x))
# lm fit
M1 <- lm (y1 ~ x)
se.coef (M1)
# glm fit
M2 <- glm (y2 ~ x)
se.coef (M2)
# lmer fit
M3 <- lmer (y1 ~ x + (1 + x |group))
se.coef (M3)
se.fixef (M3)
se.ranef (M3)
# glmer fit
M4 <- glmer (y2 ~ 1 + (0 + x |group), family=binomial(link="logit"))
se.coef (M4)
se.fixef (M4)
se.ranef (M4)
Run the code above in your browser using DataLab