50% off | Unlimited Data & AI Learning
Get 50% off unlimited learning

armada (version 0.1.0)

toys.data: Toys data

Description

toys.data is a simple simulated dataset of a binary classification problem, introduced by Weston et.al..

Usage

toys.data

Arguments

Format

An object of class list of length 2.

Details

  • $Y: output variable: a factor with 2 levels "-1" and "1";

  • $x A data-frame containing input variables: with 30 obs. of 50 variables.

The data-frame x is composed by 2 independant clusters, each cluster contains 25 correlated variables. It is an equiprobable two class problem, Y belongs to -1,1, with 12 true variables (6 true variables in each cluster), the others being noise. The simulation model is defined through the conditional distribution of the X^j for Y=y. In the first cluster, the X^j are simulated in the following way:

  • with probability 0.7, X^j ~N(y,2) for j=1,2,3, and X^j ~ N(0,2) for j=4,5,6 ;

  • with probability 0.3, X^j ~ N(0,2) for j=1,2,3, and X^j ~ N(y(j-3),2) for j=4,5,6 ;

  • the other variables are noise, X^j ~ N(0,1) for j=7,. . . ,25.

The second cluster of 25 variables is simulated in a similar way.

Examples

Run this code
# NOT RUN {
library(ClustOfVar)
library(impute)
library(FAMT)
library(VSURF)
library(glmnet)
library(anapuce)
library(qvalue)
X<-toys.data$x
Y<-toys.data$Y
scoreX<-data.frame(c(rep(8,6),rep(0,19),rep(8,6),rep(0,19)))
rownames(scoreX)<-colnames(X)
select<-ARMADA.heatmap(X, Y,  scoreX, threshold=1)
 
# }
# NOT RUN {
result<-ARMADA(X,Y, nclust=2)
select<-ARMADA.heatmap(X, Y,  result[[3]], threshold=5)
# }

Run the code above in your browser using DataLab