# prepare data
data(iris)
irisDisc <- as.data.frame(lapply(iris[1:4], function(x) discretize(x, categories=9)))
irisDisc$Species <- iris$Species
irisDisc <- irisDisc[sample(1:nrow(irisDisc)),]
# train classifier on the first 100 examples
classifier <- CBA(irisDisc[1:100,], "Species", supp = 0.05, conf=0.9)
# predict the class for the remaining 50 examples
results <- predict(classifier, irisDisc[101:150,])
table(results, irisDisc$Species[101:150])
## Not run:
# # use caret to get more statistics
# library("caret")
# confusionMatrix(results, irisDisc$Species[101:150])
# ## End(Not run)
Run the code above in your browser using DataLab