# NOT RUN {
data("iris")
iris.disc <- discretizeDF.supervised(Species ~ ., iris)
iris.trans <- as(iris.disc, "transactions")
inspect(head(iris.trans, n = 2))
# convert the class items back to a class label
response(Species ~ ., head(iris.trans, n = 2))
# Class distribution. The iris dataset is perfectly balanced.
classFrequency(Species ~ ., iris.trans)
# Majority Class
# (Note: since all class frequencies for iris are the same, the first one is returned)
majorityClass(Species ~ ., iris.trans)
# Use for CARs
cars <- mineCARs(Species ~ ., iris.trans, parameter = list(support = 0.3))
# Number of rules for each class
classFrequency(Species ~ ., cars, type = "absolute")
# conclusion (item in the RHS) of the rule as a class label
response(Species ~ ., head(iris.trans, n = 2))
# }
Run the code above in your browser using DataLab