Stumbling points for many methods of inference for the true correlation
The functions here allow visualization of these characteristics. The algorithm used for the sampling distribution of r is based on the first two steps in an asymptotic series (see Kenney and Keeping 1951).
r.dist(rho, r, n)
see.r.dist.tck()
Population correlation
A numeric vector containing possible estimates of
Sample size, an integer.
Ken Aho
All distributions are standardized to have an area of one.
Kenney, J. F. and E. S. Keeping (1951) Mathematics of Statistics, Pt. 2, 2nd ed. Van Nostrand, Princeton, NJ.
Weisstein, E. W. (2012) Correlation Coefficient--Bivariate Normal Distribution. From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/CorrelationCoefficientBivariateNormalDistribution.html
# dev.new(height=3.5)
op <- par(mfrow=c(1,2),mar=c (0,0,1.5,3), oma = c(5, 4.2, 0, 0))
vals <- r.dist(0.9, seq(-1, 1, .001), 5)
plot(seq(-1, 1, .001), vals, type = "l",ylab = "", xlab = "")
vals <- r.dist(0.5, seq(-1, 1, .001), 5)
lines(seq(-1, 1, .001), vals, lty = 2)
vals <- r.dist(0.0, seq(-1, 1, .001), 5)
lines(seq(-1, 1, .001), vals, lty = 3)
legend("topleft", lty = c(1, 2, 3), title = expression(paste(italic(n)," = 5")),
legend = c(expression(paste(rho, " = 0.9")),expression(paste(rho, " = 0.5")),
expression(paste(rho, " = 0"))),bty = "n")
vals <- r.dist(0.9, seq(-1, 1, .001), 30)
plot(seq(-1, 1, .001), vals, type = "l",xlab= "", ylab= "")
vals <- r.dist(0.5, seq(-1, 1, .001), 30)
lines(seq(-1, 1, .001), vals, lty = 2)
vals <- r.dist(0.0, seq(-1, 1, .001), 30)
lines(seq(-1, 1, .001), vals, lty = 3)
legend("topleft", lty = c(1, 2, 3), title = expression(paste(italic(n)," = 30")),
legend = c(expression(paste(rho, " = 0.9")),expression(paste(rho, " = 0.5")),
expression(paste(rho, " = 0"))), bty = "n")
mtext(side = 2, expression(paste(italic(f),"(",italic(r),")")), outer = TRUE, line = 3)
mtext(side = 1, expression(italic(r)), outer = TRUE, line = 3, at = .45)
par(op)
Run the code above in your browser using DataLab