## Use the example dataset
data(asmbPLSDA.example)
X.matrix = asmbPLSDA.example$X.matrix
X.matrix.new = asmbPLSDA.example$X.matrix.new
Y.matrix.binary = asmbPLSDA.example$Y.matrix.binary
Y.matrix.multiclass = asmbPLSDA.example$Y.matrix.morethan2levels
X.dim = asmbPLSDA.example$X.dim
PLS.comp = asmbPLSDA.example$PLS.comp
quantile.comb = asmbPLSDA.example$quantile.comb
## asmbPLSDA fit for binary outcome
asmbPLSDA.fit.binary <- asmbPLSDA.fit(X.matrix = X.matrix,
Y.matrix = Y.matrix.binary,
PLS.comp = PLS.comp,
X.dim = X.dim,
quantile.comb = quantile.comb,
outcome.type = "binary")
## asmbPLSDA fit for categorical outcome with more than 2 levels
asmbPLSDA.fit.multiclass <- asmbPLSDA.fit(X.matrix = X.matrix,
Y.matrix = Y.matrix.multiclass,
PLS.comp = PLS.comp,
X.dim = X.dim,
quantile.comb = quantile.comb,
outcome.type = "multiclass")
## asmbPLSDA prediction for the new data, you could use different numbers of
## PLS components for prediction
## Use only the first PLS component
Y.pred.binary.1 <- asmbPLSDA.predict(asmbPLSDA.fit.binary,
X.matrix.new,
PLS.comp = 1)
## Use the first two PLS components
Y.pred.binary.2 <- asmbPLSDA.predict(asmbPLSDA.fit.binary,
X.matrix.new,
PLS.comp = 2)
## PLS components for prediction
Y.pred.multiclass.1 <- asmbPLSDA.predict(asmbPLSDA.fit.multiclass,
X.matrix.new,
PLS.comp = 1)
## Use the first two PLS components
Y.pred.multiclass.2 <- asmbPLSDA.predict(asmbPLSDA.fit.multiclass,
X.matrix.new,
PLS.comp = 2)
Run the code above in your browser using DataLab