## Use the example dataset
data(asmbPLSDA.example)
X.matrix = asmbPLSDA.example$X.matrix
Y.matrix.binary = asmbPLSDA.example$Y.matrix.binary
Y.matrix.multiclass = asmbPLSDA.example$Y.matrix.morethan2levels
X.dim = asmbPLSDA.example$X.dim
PLS.comp = asmbPLSDA.example$PLS.comp
quantile.comb = asmbPLSDA.example$quantile.comb
## asmbPLSDA fit for binary outcome
asmbPLSDA.fit.binary <- asmbPLSDA.fit(X.matrix = X.matrix,
Y.matrix = Y.matrix.binary,
PLS.comp = PLS.comp,
X.dim = X.dim,
quantile.comb = quantile.comb,
outcome.type = "binary")
## asmbPLSDA fit for categorical outcome with more than 2 levels
asmbPLSDA.fit.multiclass <- asmbPLSDA.fit(X.matrix = X.matrix,
Y.matrix = Y.matrix.multiclass,
PLS.comp = PLS.comp,
X.dim = X.dim,
quantile.comb = quantile.comb,
outcome.type = "multiclass")
## visualization to show the most relevant features in each block
plotRelevance(asmbPLSDA.fit.binary)
plotRelevance(asmbPLSDA.fit.multiclass)
## custom n.top and block.name
plotRelevance(asmbPLSDA.fit.binary,
n.top = 5,
block.name = c("mRNA", "protein"))
plotRelevance(asmbPLSDA.fit.multiclass,
n.top = 7,
block.name = c("miRNA", "protein"))
Run the code above in your browser using DataLab