Learn R Programming

aspace (version 2.5)

calc_sdd: Calculate the Standard Distance Deviation (Standard Distance)

Description

This function computes the Standard Distance Deviation (SDD) or Standard Distance from a set of points.

Usage

calc_sdd(id=1, filename="SDD_Output.txt", centre.xy=NULL, calccentre=TRUE, 
weighted=FALSE, weights=NULL, CMD.npts=10000, points=activities, verbose=FALSE)

Arguments

id
A unique integer to identify a SDD estimate
filename
A string indicating the ASCII textfile where shape coordinates will be written
centre.xy
A vector of length 2, containing the x- and y-coordinates of the SDD centre
calccentre
Boolean: Set to TRUE if the mean center is to be calculated
weighted
Boolean: Set to TRUE if the weighted mean center is to be computed with weighted coordinates
weights
Weights applied to point observations, number of weights should equal the number of observations
CMD.npts
The approximate number of grid points within the convex hull for the centre of minimum distance (CMD) calculation
points
A 2-column matrix or data frame containing the set of point observations input to the calc_sdd function
verbose
Boolean: Set to TRUE if extensive feedback is desired on the standard output

Value

  • The result is a list of terms:
  • idIdentifier for the SDD shape - it should be unique
  • calccentreBoolean: TRUE if mean centre is computed
  • weightedBoolean: TRUE if the weighted mean centre is to be used instead
  • CENTRE.xX-coordinate of the centre
  • CENTRE.yY-coordinate of the centre
  • central.xX-coordinate of the identified central feature
  • central.yY-coordinate of the identified central feature
  • median.xX-coordinate of median centre, median value of the X-coordinate vector
  • median.yY-coordinate of median centre, median value of the Y-coordinate vector
  • CMD.xX-coordinate of estimated centre of minimum distance
  • CMD.yY-coordinate of estimated centre of minimum distance
  • SDD.radiusSDD value, radius of the SDD
  • SDD.areaArea of the SDD circle

Details

This function is most powerful when used repetitively within a loop to compute the SDD for subsets of points stored in a large table.

See Also

plot_sdd, calc_mcp, calc_sde, calc_box, ellipse3, makeshapes, mcp, gridpts

Examples

Run this code
calc_sdd(id=1, filename="SDD_Output.txt", centre.xy=NULL, calccentre=TRUE, 
weighted=TRUE, weights=wts, CMD.npts=10000, points=activities, verbose=TRUE)

Run the code above in your browser using DataLab