Learn R Programming

aspect (version 1.0-2)

lineals: Linearizing bivariate regressions

Description

This function performs optimal scaling in order to achieve linearizing transformations for each bivariate regression.

Usage

lineals(data, level = "nominal", itmax = 100, eps = 1e-06)

Arguments

data
Data frame or matrix
level
Vector with scale level of the variables ("nominal" or "ordinal"). If all variables have the same scale level, only one value can be provided
itmax
Maximum number of iterations
eps
Convergence criterion

Value

  • lossFinal value of the loss function
  • catscoresResulting category scores (after optimal scaling)
  • cormatCorrelation matrix based on the scores
  • cor.ratMatrix with correlation ratios
  • indmatIndicator matrix (dummy coded)
  • scorematTransformed data matrix (i.e with category scores resulting from optimal scaling)
  • burtmatBurt matrix
  • niterNumber of iterations

Details

This function can be used as a preprocessing tool for categorical and ordinal data for subsequent factor analytical techniques such as structural equation models (SEM) using the resulting correlation matrix based on the transformed data. The estimates of the corresponding structural parameters are consistent if all bivariate regressions can be linearized.

References

Mair, P., & de Leeuw, J. (2008). Scaling variables by optimizing correlational and non-correlational aspects in R. Journal of Statistical Software, Volume 32, Issue 9..

de Leeuw, J. (1988). Multivariate analysis with linearizable regressions. Psychometrika, 53, 437-454.

See Also

corAspect

Examples

Run this code
data(galo)
res.lin <- lineals(galo)
summary(res.lin)

Run the code above in your browser using DataLab