# NOT RUN {
data(Oats.dat)
## Use asreml to get predictions and associated statistics
# }
# NOT RUN {
m1.asr <- asreml(Yield ~ Nitrogen*Variety,
random=~Blocks/Wplots,
data=Oats.dat)
current.asrt <- as.asrtests(m1.asr)
Var.diffs <- predictPlus(m1.asr, classify="Nitrogen:Variety",
wald.tab = current.asrt$wald.tab,
tables = "none")
# }
# NOT RUN {
## Use lmerTest and emmmeans to get predictions and associated statistics
if (requireNamespace("lmerTest", quietly = TRUE) &
requireNamespace("emmeans", quietly = TRUE))
{
m1.lmer <- lmerTest::lmer(Yield ~ Nitrogen*Variety + (1|Blocks/Wplots),
data=Oats.dat)
## Set up a wald.tab
int <- as.data.frame(rbind(rep(NA,4)))
rownames(int) <- "(Intercept)"
wald.tab <- anova(m1.lmer, ddf = "Kenward", type = 1)[,3:6]
names(wald.tab) <- names(int) <- c("Df", "denDF", "F.inc", "Pr")
wald.tab <- rbind(int, wald.tab)
#Get predictions
Var.emm <- emmeans::emmeans(m1.lmer, specs = ~ Nitrogen:Variety)
Var.preds <- summary(Var.emm)
## Modify Var.preds to be compatible with a predictions.frame
Var.preds <- as.predictions.frame(Var.preds, predictions = "emmean",
se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))
Var.vcov <- vcov(Var.emm)
Var.sed <- NULL
den.df <- wald.tab[match("Nitrogen:Variety", rownames(wald.tab)), "denDF"]
testthat::expect_equal(den.df, 45)
#Set up an alldiffs object, which includes overall LSDs
Var.diffs <- allDifferences(predictions = Var.preds, classify = "Variety:Nitrogen",
sed = Var.sed, vcov = Var.vcov, tdf = den.df,
sortFactor = "Variety", decreasing = TRUE)
}
if (exists("Var.diffs"))
{
## Use recalcLSD to get LSDs for within Vaietry differences
Var.LSD.diffs <- recalcLSD(Var.diffs, LSDtype = "factor.combinations", LSDby = "Variety")
}
# }
Run the code above in your browser using DataLab