plot.bCI: Bayesian Confidence Interval Plot of a Smoothing Spline Fit
Description
Create trellis plots of a nonparametric function fit together
with its (approximate) 95% Bayesian confidence intervals from
a ssr/slm/snr/snm object.
Usage
# S3 method for bCI
plot(x, x.val=NULL, type.name=NULL, …)
Arguments
x
an object of class "bCI" containing point evaluation of the unknown
function and/or corresponding posterior standard devaitions.
x.val
an optional vector representing values of argument based on which the
function is to evaluate.
type.name
an optional character vector specifying the names of fits.
…
options suitable for xyplot.
Details
This function is to visualize a spline fit by use of trellis graphic facility
with Bayesian confidence intervals superposed. Multi-panel plots, based on xyplot,
are suitable for SS ANOVA decomposition of a spline estimate.
# NOT RUN {x<- seq(0, 1, len=100)
y<- 2*sin(2*pi*x)+rnorm(x)*0.5
fit<- ssr(y~x, cubic(x))
p.fit<- predict(fit)
# }# NOT RUN {plot(p.fit)
# }# NOT RUN {plot(p.fit,type.name="fit")
# }