50% off | Unlimited Data & AI Learning
Get 50% off unlimited learning

astrolibR (version 0.1)

hor2eq: Converts local horizon coordinates (alt-az) to equatorial coordinates(ra-dec)

Description

Converts local horizon coordinates (alt-az) to equatorial coordinates(ra-dec)

Usage

hor2eq(alt, az, jd, lat=43.0783, lon= -89.865, ws=FALSE, b1950 = FALSE, precess_=TRUE, nutate_=TRUE, refract_ = TRUE, aberration_ = TRUE, altitude=0)

Arguments

alt
local apparent altitude, in degrees, scalar or vector
az
local apparent altitude, in degrees, scalar or vector, measured east of north unless ws=TRUE
jd
Julian Date, in days, scalar or vector
lat
local geodetic latitude of observer, in degrees, scalar or vector (default=43.0783)
lon
east longitude of observer, in degrees; specify west longitude with a negative sign (default=-89.865)
ws
if =TRUE, azimuth is measured westward from south, rather than eastward of north
b1950
if =TRUE, Right Ascension and declination are specified in B1950/FK4, rather than J2000/FK5 coordinates (default=FALSE)
precess_
if =TRUE, precession is applied (default=TRUE)
nutate_
if =TRUE, nutation is applied (default=TRUE)
refract_
if =TRUE, refraction correction is applied (default=TRUE)
aberration_
if =TRUE, aberration correction is applied (default=TRUE)
altitude
altitude of the observing location, in meters (default=0)

Value

ra
Right Ascension of object (J2000/FK5), in degrees, scalar or vector
dec
declination of object (J2000/FK5), in degrees, scalar or vector
ha
hour angle, in degrees

Details

This function calculates equatorial (ra,dec) coordinates from horizon (alt,az) coords. It is typically accurate to about 1 arcsecond or better, performing precession, nutation, aberration, and refraction corrections. Inputs can be vectors except for the observer's latitude, longitude and altitude. ra, dec, alt and az must be vectors of the same length, but jd may be a scalar or a vector of the same length.

Steps in the calculation: Precess Ra-Dec to current equinox Nutation Correction to Ra-Dec Aberration correction to Ra-Dec Calculate Local Mean Sidereal Time Calculate Local Apparent Sidereal Time Calculate Hour Angle Apply spherical trigonometry to find Apparent Alt-Az Apply refraction correction to find observed Alt

The user can add specification for temperature and pressure used by function co_refract to calculate the refraction effect of the atmosphere. See co_refract for more details.

See Also

altaz2hadec co_nutate co_refract ct2lst precess

Examples

Run this code
#   You are at Kitt Peak National Observatory, looking at a star at azimuth
#   angle 264d 55m 06s and elevation 37d 54m 41s (in the visible).  Today is
#   Dec 25, 2041 and the local time is 10 PM precisely.  What is the ra and dec
#   (J2000) of the star you're looking at?   The temperature here is about 0
#   Celsius, and the pressure is 781 millibars.    The Julian date for this
#   time is 2466879.7083333.
#   Result: ra=00h13m14.s  dec=+15d11'0.3"   ha=+03h3m30.1s
#   The star is Algenib
 
hor2eq(ten(37,54,41), ten(264,55,06), 2466879.7083333, lat=+31.9633, lon=-111.6)

# The program produces this output (because the VERBOSE keyword was set):
# Latitude = +31 57 48.0   Longitude = *** 36  0.0    longitude prints weirdly b/c of negative 
# input to ADSTRING!!
# Julian Date =  2466879.708333
# Az, El =  17 39 40.4  +37 54 41.0   (Observer Coords)
# Az, El =  17 39 40.4  +37 53 39.6   (Apparent Coords)
# LMST = +03 53 54.1
# LAST = +03 53 53.6
# Hour Angle = +03 38 30.1  (hh:mm:ss)
# Ra, Dec:  00 15 23.5  +15 25  1.9   (Apparent Coords)
# Ra, Dec:  00 15 24.2  +15 25  0.1   (J2041.9841)
# Ra, Dec:  00 13 14.1  +15 11  0.3   (J2000)
# The star is therefore Algenib!  Compare the derived Ra, Dec with what XEPHEM got:
# Ra, Dec:      00 13 14.2  +15 11  1.0   (J2000)

Run the code above in your browser using DataLab