Learn R Programming

astsa (version 1.1)

EM0: EM Algorithm for Time Invariant State Space Models

Description

Estimation of the parameters in the model (6.1)--(6.2) via the EM algorithm. See Example 6.8 on page 342

Usage

EM0(num, y, A, mu0, Sigma0, Phi, cQ, cR, max.iter = 50, tol = 0.01)

Arguments

num
number of observations
y
observation vector or time series
A
time-invariant observation matrix
mu0
initial state mean vector
Sigma0
initial state covariance matrix
Phi
state transition matrix
cQ
Cholesky-like decomposition of state error covariance matrix Q -- see details below
cR
Cholesky-like decomposition of state error covariance matrix R -- see details below
max.iter
maximum number of iterations
tol
relative tolerance for determining convergence

Value

  • PhiEstimate of Phi
  • QEstimate of Q
  • REstimate of R
  • mu0Estimate of initial state mean
  • Sigma0Estimate of initial state covariance matrix
  • like-log likelihood at each iteration
  • niternumber of iterations to convergence
  • cvgrelative tolerance at convergence

Details

Practically, the script only requires that Q or R may be reconstructed as t(cQ)%*%(cQ) or t(cR)%*%(cR), respectively.

References

http://www.stat.pitt.edu/stoffer/tsa3/