Usage
EM1(num, y, A, mu0, Sigma0, Phi, Ups, Gam, cQ, cR, input,
max.iter = 50, tol = 0.01)
Arguments
num
number of observations
y
observation vector or time series; use 0 for missing values
A
observation matrices, an array with dim=c(q,p,n)
; use 0 for missing values
Sigma0
initial state covariance matrix
Phi
state transition matrix
Ups
state input matrix; set to 0 if not used
Gam
observation input matrix; set to 0 if not used
cQ
Cholesky-like decomposition of state error covariance matrix Q -- see details below
cR
R is diagonal here, so cR = sqrt(R)
-- also, see details below
input
matrix or vector of inputs having the same row dimension as y; set to 0 if not used
max.iter
maximum number of iterations
tol
relative tolerance for determining convergence