## AR(2) with mean 50 [n = 500 is default]
y = sarima.sim(ar=c(1.5,-.75)) + 50
tsplot(y)
## ARIMA(0,1,1) with drift ['mean' refers to the innovations]
tsplot(sarima.sim(ma=-.8, d=1, mean=.25))
## Overparameterized White Noise
tsplot(sarima.sim(ar=.9, ma=-.9))
## SAR(1) example from text
set.seed(10101010)
x = sarima.sim(sar=.95, S=12, n=37) + 5
tsplot(x, type='c')
points(x, pch=Months, cex=1.5, font=2, col=1:12)
## SARIMA(0,1,1)x(0,1,1)_12 - B&J's favorite
set.seed(101010)
tsplot(sarima.sim(d=1, ma=-.4, D=1, sma=-.6, S=12, n=120))
## infinite variance t-errors
tsplot(sarima.sim(ar=.9, rand.gen=function(n, ...) rt(n, df=2) ))
## use your own innovations
dog = rexp(150, rate=.5)*sign(runif(150,-1,1))
tsplot(sarima.sim(n=100, ar=.99, innov=dog, burnin=50))
## generate seasonal data but no P, D or Q - you will receive
## a message to make sure that you wanted to do this on purpose:
tsplot(sarima.sim(ar=c(1.5,-.75), n=144, S=12), ylab='doggy', xaxt='n')
mtext(seq(0,144,12), side=1, line=.5, at=0:12)
Run the code above in your browser using DataLab