rlogit (formula, dat, const=0.5, kmax=1e3, maxhalf=10, verbose=FALSE)
"coef"(object,...)
"trainauc"(fit, training.data=NULL, ...)
"predict"(object, newdata, ...)
"ratio"(fit)
logistic.f(eta,h,loss=TRUE)
rauc
, sauc
or sauc.dca
If initwml == TRUE, a weighted ML estimator is computed with weights derived from the MCD estimator computed on the explanatory variables. If initwml == FALSE, a classical ML fit is perfomed. When the explanatory variables contain binary observations, it is recommended to set initwml to FALSE or to modify the code of the algorithm to compute the weights only on the continuous variables.
set.seed(1)
x0 <- matrix(rnorm(100,1))
y <- as.numeric(runif(100)>0.5) # numeric(runif(100)>0.5)
dat=data.frame(y=y, x=x0)
rlogit(y~x, dat)
Run the code above in your browser using DataLab