# NOT RUN {
# read and zero-fill the ebd data
f_ebd <- system.file("extdata/zerofill-ex_ebd.txt", package = "auk")
f_smpl <- system.file("extdata/zerofill-ex_sampling.txt", package = "auk")
# data must be for a single species
ebd_zf <- auk_zerofill(x = f_ebd, sampling_events = f_smpl,
                       species = "Collared Kingfisher",
                       collapse = TRUE)
occ <- filter_repeat_visits(ebd_zf, n_days = 30)
# format for unmarked
# typically one would join in habitat covariates prior to this step
occ_wide <- format_unmarked_occu(occ,
                                 response = "species_observed",
                                 site_covs = c("latitude", "longitude"),
                                 obs_covs = c("effort_distance_km", 
                                              "duration_minutes"))
# create an unmarked object
if (requireNamespace("unmarked", quietly = TRUE)) {
  occ_um <- unmarked::formatWide(occ_wide, type = "unmarkedFrameOccu")
  unmarked::summary(occ_um)
}
# this function can also be used for abundance modeling
abd <- ebd_zf %>% 
  # convert count to integer, drop records with no count
  dplyr::mutate(observation_count = as.integer(observation_count)) %>% 
  dplyr::filter(!is.na(observation_count)) %>% 
  # filter to repeated visits
  filter_repeat_visits(n_days = 30)
# prepare for conversion to unmarkedFramePCount object
abd_wide <- format_unmarked_occu(abd,
                                 response = "observation_count",
                                 site_covs = c("latitude", "longitude"),
                                 obs_covs = c("effort_distance_km", 
                                              "duration_minutes"))
# create an unmarked object
if (requireNamespace("unmarked", quietly = TRUE)) {
  abd_um <- unmarked::formatWide(abd_wide, type = "unmarkedFrameOccu")
  unmarked::summary(abd_um)
}
# }
Run the code above in your browser using DataLab