Apply post-stratification to classifiers.
post_stratification(
y,
L1.x,
L2.x,
L2.unit,
L2.reg,
best.subset.opt,
lasso.opt,
lasso.L2.x,
pca.opt,
gb.opt,
svm.opt,
svm.L2.reg,
svm.L2.unit,
svm.L2.x,
mrp.include,
n.minobsinnode,
L2.unit.include,
L2.reg.include,
kernel,
mrp.L2.x,
data,
ebma.fold,
census,
verbose,
deep.mrp,
deep.L2.x,
deep.L2.reg,
deep.splines
)
Outcome variable. A character vector containing the column names of
the outcome variable. A character scalar containing the column name of
the outcome variable in survey
.
Individual-level covariates. A character vector containing the
column names of the individual-level variables in survey
and
census
used to predict outcome y
. Note that geographic unit
is specified in argument L2.unit
.
Context-level covariates. A character vector containing the
column names of the context-level variables in survey
and
census
used to predict outcome y
. To exclude context-level
variables, set L2.x = NULL
.
Geographic unit. A character scalar containing the column
name of the geographic unit in survey
and census
at which
outcomes should be aggregated.
Geographic region. A character scalar containing the column
name of the geographic region in survey
and census
by which
geographic units are grouped (L2.unit
must be nested within
L2.reg
). Default is NULL
.
Optimal tuning parameters from best subset selection
classifier. A list returned by run_best_subset()
.
Optimal tuning parameters from lasso classifier A list
returned by run_lasso()
.
Lasso context-level covariates. A character vector
containing the column names of the context-level variables in
survey
and census
to be used by the lasso classifier. If
NULL
and lasso
is set to TRUE
, then lasso uses the
variables specified in L2.x
. Default is NULL
.
Optimal tuning parameters from best subset selection with
principal components classifier A list returned by run_pca()
.
Optimal tuning parameters from gradient tree boosting
classifier A list returned by run_gb()
.
Optimal tuning parameters from support vector machine
classifier A list returned by run_svm()
.
SVM L2.reg. A logical argument indicating whether
L2.reg
should be included in the SVM classifier. Default is
FALSE
.
SVM L2.unit. A logical argument indicating whether
L2.unit
should be included in the SVM classifier. Default is
FALSE
.
SVM context-level covariates. A character vector containing
the column names of the context-level variables in survey
and
census
to be used by the SVM classifier. If NULL
and
svm
is set to TRUE
, then SVM uses the variables specified in
L2.x
. Default is NULL
.
Whether to run MRP classifier. A logical argument
indicating whether the standard MRP classifier should be used for
predicting outcome y
. Passed from autoMrP()
argument
mrp
.
GB minimum number of observations in the terminal
nodes. An integer-valued scalar specifying the minimum number of
observations that each terminal node of the trees must contain. Passed from
autoMrP()
argument gb.n.minobsinnode
.
GB L2.unit. A logical argument indicating whether
L2.unit
should be included in the GB classifier. Passed from
autoMrP()
argument gb.L2.unit
.
A logical argument indicating whether L2.reg
should be included in the GB classifier. Passed from autoMrP()
argument GB L2.reg
.
SVM kernel. A character-valued scalar specifying the kernel to
be used by SVM. The possible values are linear
, polynomial
,
radial
, and sigmoid
. Passed from autoMrP()
argument
svm.kernel
.
MRP context-level covariates. A character vector containing
the column names of the context-level variables in survey
and
census
to be used by the MRP classifier. The character vector
empty if no context-level variables should be used by the MRP
classifier. If NULL
and mrp
is set to TRUE
, then MRP
uses the variables specified in L2.x
. Default is NULL
. Note:
For the empty MrP model, set L2.x = NULL
and mrp.L2.x = ""
.
A data.frame containing the survey data used in classifier training.
A data.frame containing the data not used in classifier training.
Census data. A data.frame
whose column names include
L1.x
, L2.x
, L2.unit
, if specified, L2.reg
and
pcs
, and either bin.proportion
or bin.size
.
Verbose output. A logical argument indicating whether or not
verbose output should be printed. Default is FALSE
.
Deep MRP classifier. A logical argument indicating whether
the deep MRP classifier should be used for predicting outcome y
.
Default is FALSE
.
Deep MRP context-level covariates. A character vector
containing the column names of the context-level variables in survey
and census
to be used by the deep MRP classifier. If NULL
and
deep.mrp
is set to TRUE
, then deep MRP uses the variables
specified in L2.x
. Default is NULL
.
Deep MRP L2.reg. A logical argument indicating whether
L2.reg
should be included in the deep MRP classifier. Default is
TRUE
.
Deep MRP splines. A logical argument indicating whether
splines should be used in the deep MRP classifier. Default is TRUE
.