Learn R Programming

autotab (version 0.1.1)

encoder_decoder_information: Specifying Encoder and Decoder Architectures for VAE_train()

Description

Specifying Encoder and Decoder Architectures for VAE_train()

Arguments

Encoder and Decoder configuration

The arguments encoder_info and decoder_info define the architecture of the encoder and decoder networks used in VAE_train(). Each is a list in which every element describes one layer in sequence.

AutoTab currently supports two layer types: "dense" and "dropout".

Dense layers

When input1 = "dense", the layer specification takes the form:

  • input2: Numeric. Number of units (nodes).

  • input3: Character. Activation function (any TensorFlow/Keras activation name).

  • input4: Integer (0/1). L2 regularization flag. Default: 0.

  • input5: Numeric. L2 regularization strength (lambda). Default: 1e-4.

  • input6: Logical. Apply batch normalization. Default: FALSE.

  • input7: Numeric. Batch normalization momentum. Default: 0.99.

  • input8: Logical. Whether batch normalization scale and center parameters are trainable. Default: TRUE.

Dropout layers

When input1 = "dropout", the layer specification is:

  • input2: Numeric. Dropout rate.

Together, these lists fully specify the encoder and decoder architectures used during VAE training.

See Also

VAE_train()