Learn R Programming

autoxgboost - Automatic tuning and fitting of xgboost.

  • Install the development version

    devtools::install_github("ja-thomas/autoxgboost")

General overview

autoxgboost aims to find an optimal xgboost model automatically using the machine learning framework mlr and the bayesian optimization framework mlrMBO.

Work in progress!

Benchmark

NameFactorsNumericsClassesTrain instancesTest instances
Dexter20 00002420180
GermanCredit1372700300
Dorothea100 00002805345
Yeast08101 038446
Amazon10 0000491 050450
Secom059121 096471
Semeion2560101 115478
Car6041 209519
Madelon500021 820780
KR-vs-KP37022 237959
Abalone17282 9231 254
Wine Quality011113 4251 469
Waveform04033 5001 500
Gisette5 000024 9002 100
Convex078428 00050 000
Rot. MNIST + BI07841012 00050 000

Datasets used for the comparison benchmark of autoxgboost, Auto-WEKA and auto-sklearn.

DatasetbaselineautoxgboostAuto-WEKAauto-sklearn
Dexter52,7812.227.225.56
GermanCredit32.6727.6728.3327.00
Dorothea6.095.226.385.51
Yeast68.9938.8840.4540.67
Amazon99.3326.2237.5616.00
Secom7.877.877.877.87
Semeion92.458.385.035.24
Car29,151.160.580.39
Madelon50.2616.5421.1512.44
KR-vs-KP48.961.670.310.42
Abalone84.0473.7573.0273.50
Wine Quality55.6833.7033.7033.76
Waveform68.8015.4014.4014.93
Gisette50.712.482.241.62
Convex50.0022.7422.0517.53
Rot. MNIST + BI88.8847.0955.8446.92

Benchmark results are median percent error across 100 000 bootstrap samples (out of 25 runs) simulating 4 parallel runs. Bold numbers indicate best performing algorithms.

autoxgboost - How to Cite

The Automatic Gradient Boosting framework was presented at the ICML/IJCAI-ECAI 2018 AutoML Workshop (poster).
Please cite our ICML AutoML workshop paper on arxiv. You can get citation info via citation("autoxgboost") or copy the following BibTex entry:

@inproceedings{autoxgboost,
  title={Automatic Gradient Boosting},
  author={Thomas, Janek and Coors, Stefan and Bischl, Bernd},
  booktitle={International Workshop on Automatic Machine Learning at ICML},
  year={2018}
}

Copy Link

Version

Version

0.0.0.9000

License

BSD_2_clause + file LICENSE

Maintainer

Janek Thomas

Last Published

April 8th, 2020

Functions in autoxgboost (0.0.0.9000)

AutoxgbResult

Result of a autoxgboost call.
autoxgboost

Fit and optimize a xgboost model.
autoxgbparset

autoxgboost default parameter set.