Estimate the parameters of time series models based on the Allan Variance Linear Regression (AVLR) approach
avlr(x, ...)# S3 method for default
avlr(
x,
qn = NULL,
wn = NULL,
rw = NULL,
dr = NULL,
ci = FALSE,
B = 100,
alpha = 0.05,
...
)
# S3 method for imu_avar
avlr(
x,
qn_gyro = NULL,
wn_gyro = NULL,
rw_gyro = NULL,
dr_gyro = NULL,
qn_acc = NULL,
wn_acc = NULL,
rw_acc = NULL,
dr_acc = NULL,
B = 100,
alpha = 0.05,
...
)
If the input x
is a vec
, then the function returns a list
that contains:
"estimates": The estimated value of the parameters.
"implied_ad": The Allan deviation implied by the estimated parameters.
"implied_ad_decomp": The Allan deviation implied by the estimated parameters for each individual model (if more than one is specified).
"av": The avar
object computed from the provided data.
If the input x
is of the class imu_avar
, then the function returns a list
that contains:
"gyro": The estimation results correseponding to the gyroscope component.
"acc": The estimation results correseponding to the accelerometer component.
"imu_av": The imu_avar
object computed based on the IMU data.
A vec
of time series observations or an imu
object.
Further arguments passed to other methods.
A vec
specifying on which scales the parameters of a Quantization Noise (QN) should be computed.
A vec
specifying on which scales the parameters of a White Noise (WN) should be computed.
A vec
specifying on which scales the parameters of a Random Wakk (RW) should be computed.
A vec
specifying on which scales the parameters of a Drift (DR) should be computed.
A boolean
to compute parameter confidence intervals.
A double
for the number of bootstrap replicates to compute the parameter confidence intervals.
A double
defining the level of the confidence interval (1 - `alpha`).
A vec
specifying on which scales the parameters of a Quantization Noise (QN) should be computed for the gyroscope component.
A vec
specifying on which scales the parameters of a White Noise (WN) should be computed for the gyroscope component.
A vec
specifying on which scales the parameters of a Random Wakk (RW) should be computed for the gyroscope component.
A vec
specifying on which scales the parameters of a Drift (DR) should be computed for the gyroscope component.
A vec
specifying on which scales the parameters of a Quantization Noise (QN) should be computed for the accelerometer component.
A vec
specifying on which scales the parameters of a White Noise (WN) should be computed for the accelerometer component.
A vec
specifying on which scales the parameters of a Random Wakk (RW) should be computed for the accelerometer component.
A vec
specifying on which scales the parameters of a Drift (DR) should be computed for the accelerometer component.
# \donttest{
set.seed(999)
N = 100000
Xt = rnorm(N) + cumsum(rnorm(N, 0, 3e-3))
av = avar(Xt)
plot(av)
# Input time series
fit = avlr(Xt, wn = 1:8, rw = 11:15)
fit
# Input directly Allan variance
fit = avlr(av, wn = 1:8, rw = 11:15)
fit
# Plot functions
plot(fit)
plot(fit, decomp = TRUE)
plot(fit, decomp = TRUE, show_scales = TRUE)
# }
Run the code above in your browser using DataLab