fisher.test()aylmer.test(x, alternative = "two.sided", simulate.p.value = FALSE,
n = 1e5, B = 2000, burnin = 100, use.brob = FALSE)
aylmer.function(x, func, simulate.p.value = FALSE, n = 1e5, B = 2000,
burnin=100, use.brob=FALSE, DNAME=NULL)
prob(x, give.log=TRUE, use.brob = FALSE)NA entries, coerced
to integer (an object of class board)FALSE meaning to
return the results of an exact (combinatorial) test, and TRUE
meaning to compute p-values by Monte Carlo simulationsimulate.p.value is FALSE; passed to allprobs()
and thence no.of.boards(). This argument has a finite
default value to prevent infiFALSE meaning to use
IEEE
arithmetic and TRUE meaning to use Brobdingnagian arithmeticprob(), Boolean with default TRUE
meaning to return the logarithm of the answer and FALSE
meaning to return the valueaylmer.function(), the test function
used. The p-value returned is the probability that a random
permissible board has a test function less than that of argument
xaylmer.function(), the name of the
dataset to be specified; default value of NULL means to use
standard constructionhtestsimulate.p.value is TRUE, a vector of random
probabilities is used instead of the full enumeration. A total of
B+burnin boards are generated of which the first burnin
are discarded.aylmer.function())fisher.test, randomprobsdata(iqd)
aylmer.test(iqd)
aylmer.test(iqd)
aylmer.test(iqd,simulate.p.value=TRUE)
data(frogs)
prob(frogs)
prob(frogs,use.brob=TRUE)Run the code above in your browser using DataLab