Learn R Programming

⚠️There's a newer version (2.1.4) of this package.Take me there.

backbone

The backbone package provides methods for extracting from a weighted graph a binary or signed backbone that retains only the significant edges. The user may input a weighted graph, or a bipartite graph from which a weighted graph is first constructed via projection. Backbone extraction methods include the stochastic degree sequence model (Neal, Z. P. (2014)), hypergeometric model (Neal, Z. (2013)), the fixed degree sequence model (Zweig, K. A., and Kaufmann, M. (2011)), as well as a universal threshold method.

In a graph G, edges are either present (i.e. G_{ij}=1) or absent (i.e. G_{ij}=0). However in a weighted or valued graph, edges can take a range of values that may capture such properties as the strength or capacity of the edge. Although weighted graphs contain a large amount of information, there are some cases (e.g. visualization, application of statistical models not developed for weighted graphs) where it is useful to reduce this information by focusing on an unweighted subgraph that contains only the most important edges. We call this subgraph the backbone of G, which we denote as G’. Extracting G’ from G requires deciding which edges to preserve. This usually involves selecting a threshold T_{ij} such that edges are preserved if they are above the threshold (i.e. G_{ij}’=1 if G_{ij} > T_{ij}), and omitted if they are below the threshold (i.e. G_{ij}’=0 if G_{ij} < T_{ij}). It is also possible to extract a signed backbone by selecting upper T_{ij} and lower T’_{ij} thresholds such that G_{ij}’=1 if G_{ij}>T_{ij}, G_{ij}’=-1 if G_{ij} < T’_{ij}, and G_{ij}’=0 if G_{ij} > T’_{ij} and G_{ij} < T_{ij}. The key to all backbone extraction methods lies in the selection of T. The backbone package provides several different methods for selecting T and thus extracting G’ from G.

Installation

You can install the released version of backbone from CRAN with:

install.packages("backbone")

You can install from GitHub with:

library(devtools)
install_github("domagal9/backbone", build_vignettes = TRUE)

Example

This is a basic example which shows you how to solve a common problem:

library(backbone)
data(davis)
sdsm_props <- sdsm(davis, trials = 100, dyad = c("EVELYN", "CHARLOTTE"))
#> Finding the Backbone using logit SDSM
#> Estimated time to complete is 1.2 secs
sdsm_bb <- backbone.extract(sdsm_props$positive, sdsm_props$negative, alpha = 0.05)

For more detailed examples and background on the topic, see vignette("backbone_introduction", package = "backbone").

Copy Link

Version

Install

install.packages('backbone')

Monthly Downloads

717

Version

1.1.0

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Rachel Domagalski

Last Published

December 2nd, 2019

Functions in backbone (1.1.0)

universal

Compute universal threshold backbone
backbone

backbone: Extracts the Backbone from Weighted Graphs
backbone.extract

Extracts the backbone of a weighted network using results from a null model
hyperg

Compute hypergeometric backbone
sdsm

The stochastic degree sequence model (sdsm)
davis

Davis Southern Women Data Set
fdsm

The fixed degree sequence model (fdsm)