data(screen_data)
theta_0 <- list("rate_H" = 7e-4, "shape_H" = 2.0,
"rate_P" = 0.5 , "shape_P" = 1.0,
"beta" = 0.9, psi = 0.4)
prior <- list("rate_H" = 0.01, "shape_H" = 1,
"rate_P" = 0.01, "shape_P" = 1,
"a_psi" = 1/2 , "b_psi" = 1/2,
"a_beta" = 38.5, "b_beta" = 5.8)
# This is for illustration only -- the number of Gibbs samples should be
# significantly larger and the epsilon values should be tuned.
example <- fit_baclava(data.assess = data.screen,
data.clinical = data.clinical,
t0 = 30.0,
theta_0 = theta_0,
prior = prior)
plot(example)
plot(example, type = "trace", trace_var = "psi", burnin = 0L)
plot(example, type = "trace", trace_var = "rate_H", burnin = 0L)
plot(example, type = "trace", trace_var = "rate_P", burnin = 0L)
plot(example, type = "trace", trace_var = "beta", burnin = 0L)
plot(example, type = "acf")
plot(example, type = "hazard", max_age = 70)
Run the code above in your browser using DataLab