data(screen_data)
theta_0 <- list("rate_H" = 7e-4, "shape_H" = 2.0,
"rate_P" = 0.5 , "shape_P" = 1.0,
"beta" = 0.9, psi = 0.4)
prior <- list("rate_H" = 0.01, "shape_H" = 1,
"rate_P" = 0.01, "shape_P" = 1,
"a_psi" = 1/2 , "b_psi" = 1/2,
"a_beta" = 38.5, "b_beta" = 5.8)
# This is for illustration only -- the number of MCMC samples should be
# significantly larger and the epsilon values should be tuned.
example <- fit_baclava(data.assess = data.screen,
data.clinical = data.clinical,
t0 = 30.0,
theta_0 = theta_0,
prior = prior)
# if rates are not available, an all cause dataset is provided in the package
# NOTE: these predictions will be over-estimated
data(all_cause_rates)
all_cause_rates <- all_cause_rates[, c("Age", "both")]
colnames(all_cause_rates) <- c("Age", "Rate")
# using single screen for example speed
predicted_odx <- predictODX(object = example,
other.cause.rates = all_cause_rates,
screening.schedule = 40,
burnin = 10)
plot(predicted_odx)
Run the code above in your browser using DataLab