## specify and fit model
mod <- mod_pois(injuries ~ age * sex + ethnicity + year,
data = nzl_injuries,
exposure = popn) |>
fit()
mod
## forecasts
mod |>
forecast(labels = 2019:2024)
## combined estimates and forecasts
mod |>
forecast(labels = 2019:2024,
include_estimates = TRUE)
## hyper-parameters
mod |>
forecast(labels = 2019:2024,
output = "components")
## hold back some data and forecast
library(dplyr, warn.conflicts = FALSE)
data_historical <- nzl_injuries |>
filter(year <= 2015)
data_forecast <- nzl_injuries |>
filter(year > 2015) |>
mutate(injuries = NA)
mod_pois(injuries ~ age * sex + ethnicity + year,
data = data_historical,
exposure = popn) |>
fit() |>
forecast(newdata = data_forecast)
## forecast using GDP per capita in 2023 as a covariate
mod_births <- mod_pois(births ~ age * region + time,
data = kor_births,
exposure = popn) |>
set_covariates(~ gdp_pc_2023) |>
fit()
mod_births |>
forecast(labels = 2024:2025)
Run the code above in your browser using DataLab