Learn R Programming

baggingbwsel: Bagging bandwidth selection in kernel density and regression estimation

Version 1.1

This package implements bagging bandwidth selection methods for the Parzen-Rosenblatt kernel density estimator, and for the Nadaraya-Watson and local polynomial kernel regression estimators. These bandwidth selectors can achieve greater statistical precision than their non-bagged counterparts while being computationally fast. See Barreiro-Ures et al. (2021a) and Barreiro-Ures et al. (2021b).

Installation

baggingbwsel is not yet available from CRAN, but you can install the development version from github with:

# install.packages("remotes")
remotes::install_github("rubenfcasal/baggingbwsel")

Note also that, as this package requires compilation, Windows users need to have previously installed the appropriate version of Rtools, and OS X users need to have installed Xcode.

Authors

Maintainer: Ruben Fernandez-Casal (Dep. Mathematics, University of A Coruña, Spain). Please send comments, error reports or suggestions to rubenfcasal@gmail.com.

References

Copy Link

Version

Install

install.packages('baggingbwsel')

Monthly Downloads

330

Version

1.1

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Ruben FernandezCasal

Last Published

July 27th, 2024

Functions in baggingbwsel (1.1)

bagreg

Bagged CV bandwidth selector for local polynomial kernel regression.
bagcv

Bagged CV bandwidth selector for Parzen-Rosenblatt estimator
baggingbwsel-package

baggingbwsel: Bagging bandwidth selection in kernel density and regression estimation
hboot_bag

Bagging bootstrap bandwidth selector for Parzen-Rosenblatt estimator
tss_dens

Second order bagging CV bandwidth selector for Parzen-Rosenblatt estimator
mopt

Estimation of the optimal subsample size for bagged CV bandwidth for Parzen-Rosenblatt estimator
hsss_dens

Generalized bagging CV bandwidth selector for Parzen-Rosenblatt estimator