cause_list <- c(LETTERS[1:6])
J.BrS <- 6
model_options_no_reg <- list(
likelihood = list(
cause_list = cause_list,
k_subclass = 2,
Eti_formula = ~-1,
# no covariate for the etiology regression
FPR_formula = list(
MBS1 = ~-1)
# no covariate for the subclass weight regression
),
use_measurements = c("BrS"),
# use bronze-standard data only for model estimation.
prior= list(
Eti_prior = overall_uniform(1,cause_list),
# Dirichlet(1,...,1) prior for the etiology.
TPR_prior = list(BrS = list(
info = "informative", # informative prior for TPRs
input = "match_range",
# specify the informative prior for TPRs by specifying a plausible range.
val = list(MBS1 = list(up = list(rep(0.99,J.BrS)),
# upper ranges: matched to 97.5% quantile of a Beta prior
low = list(rep(0.55,J.BrS))))
# lower ranges: matched to 2.5% quantile of a Beta prior
)
)
)
)
data("data_nplcm_noreg")
assign_model(model_options_no_reg,data_nplcm_noreg)
Run the code above in your browser using DataLab