Usage
metadiag(data, re="normal", link="logit", R = matrix(c(1, 0, 0, 1),
byrow=TRUE, nrow=2), m.0 = c(0,0), pre.mu = c(0.25, 0.25), k = 3,
nu.0 = 1, n.chains = 3, n.iter = 40000, n.burnin = 20000,
n.thin = 10, verbose = TRUE)
Arguments
data
A data frame with 4 columns containing the true positives,
number of patients with disease, false positives, number of patients
without disease
re
Random effects distribution for the resulting model. Possible values are normal and scalemix
link
The link function used in the model. Possible values are logit and cloglog.
R
A 2x2 matrix parameters for the prior of Lambda, default value is matrix(c(1, 0, 0, 1), byrow=TRUE, nrow=2)
m.0
A two dimensional vector for the priors of mu, where the default values
are c(0, 0)
pre.mu
A two dimensional vector for the precision of mu, where the defaults
are c(0.25, 0.25)
k
The degrees of freedom for the Wishart prior of Lambda. Default: 3
nu.0
The parameter for the prior of nu, default value is nu.0=1
n.chains
Number of chains for the Models. default: 3
n.iter
Number of Iterations. iter-burnin = obtained values. default: 40k
n.burnin
Number of Iterations that are skipped at the beginning of the simulation. Default: 20k