Learn R Programming

⚠️There's a newer version (1.2-5) of this package.Take me there.

bamlss (version 1.1-1)

Bayesian Additive Models for Location, Scale, and Shape (and Beyond)

Description

Infrastructure for estimating probabilistic distributional regression models in a Bayesian framework. The distribution parameters may capture location, scale, shape, etc. and every parameter may depend on complex additive terms (fixed, random, smooth, spatial, etc.) similar to a generalized additive model. The conceptual and computational framework is introduced in Umlauf, Klein, Zeileis (2019) and the R package in Umlauf, Klein, Simon, Zeileis (2019) .

Copy Link

Version

Install

install.packages('bamlss')

Monthly Downloads

1,195

Version

1.1-1

License

GPL-2 | GPL-3

Maintainer

Nikolaus Umlauf

Last Published

November 13th, 2019

Functions in bamlss (1.1-1)

JAGS

Markov Chain Monte Carlo for BAMLSS using JAGS
bamlss.frame

Create a Model Frame for BAMLSS
WAIC

Watanabe-Akaike Information Criterion (WAIC)
bamlss-package

Bayesian Additive Models for Location Scale and Shape (and Beyond)
Surv2

Create a Survival Object for Joint Models
Volcano

Artificial Data Set based on Auckland's Maunga Whau Volcano
BayesX

Markov Chain Monte Carlo for BAMLSS using BayesX
bamlss.engine.setup

BAMLSS Engine Setup Function
bamlss.formula

Formulae for BAMLSS
bbfit

Batchwise Backfitting
bamlss

Fit Bayesian Additive Models for Location Scale and Shape (and Beyond)
boost

Boosting BAMLSS
bamlss.engine.helpers

BAMLSS Engine Helper Functions
continue

Continue Sampling
cox_mcmc

Cox Model Markov Chain Monte Carlo
cox_mode

Cox Model Posterior Mode Estimation
homstart_data

HOMSTART Precipitation Data
c95

Compute 95% Credible Interval and Mean
cox_predict

Cox Model Prediction
isgd

Implicit Stochastic Gradient Descent Optimizer
smooth.construct.kr.smooth.spec

Kriging Smooth Constructor
jm_bamlss

Fit Flexible Additive Joint Models
pathplot

Plot Coefficients Paths
parameters

Extract or Initialize Parameters for BAMLSS
dl.bamlss

Deep Learning BAMLSS
la

Lasso Smooth Constructor
coef.bamlss

Extract BAMLSS Coefficients
bboost

Bootstrap Boosting
lin

Linear Effects for BAMLSS
family.bamlss

Distribution Families in bamlss
colorlegend

Plot a Color Legend
s2

Special Smooths in BAMLSS Formulae
fitted.bamlss

BAMLSS Fitted Values
bfit

Fit BAMLSS with Backfitting
gF

Get a BAMLSS Family
randomize

Transform Smooth Constructs to Random Effects
plot.bamlss

Plotting BAMLSS
plot2d

Plot 2D Effects
samples

Extract Samples
model.frame.bamlss

BAMLSS Model Frame
plotblock

Factor Variable and Random Effects Plots
smooth_check

MCMC Based Simple Significance Check for Smooth Terms
rb

Random Bits for BAMLSS
plot3d

Plot 3D Effects
model.matrix.bamlss.frame

Construct/Extract BAMLSS Design Matrices
stabsel

Stability selection.
summary.bamlss

Summary for BAMLSS
scale2

Scaling Vectors and Matrices
samplestats

Sampling Statistics
smooth.construct.sr.smooth.spec

Random Effects P-Spline
results.bamlss.default

Compute BAMLSS Results for Plotting and Summaries
n

Neural Networks for BAMLSS
residuals.bamlss

Compute BAMLSS Residuals
neighbormatrix

Compute a Neighborhood Matrix from Spatial Polygons
rmf

Remove Special Characters
plotmap

Plot Maps
simSurv

Simulate Survival Times
response_name

sliceplot

Plot Slices of Bivariate Functions
predict.bamlss

BAMLSS Prediction
surv_transform

Survival Model Transformer Function
smooth.construct

Constructor Functions for Smooth Terms in BAMLSS
boost2

Some Shortcuts
simJM

Simulate longitudinal and survival data for joint models
terms.bamlss

BAMLSS Model Terms
smooth.construct.ms.smooth.spec

Smooth constructor for monotonic P-splines
Crazy

Crazy simulated data
Golf

Prices of Used Cars Data
MVNORM

Create Samples for BAMLSS by Multivariate Normal Approximation
Austria

Austria States and Topography
GAMart

GAM Artificial Data Set
GMCMC

General Markov Chain Monte Carlo for BAMLSS
LondonFire

London Fire Data
DIC

Deviance Information Criterion