Converts community simulation object into a Presence Absence Matrices (PAM) for a given simulation steps.
csim2pam(community_sim, which_steps)
An object of class pam
; it contains five slots.
1) pams: a list of sparse matrices with Presence-Absence information (PAMs).
2) which_steps: time steps corresponding to each PAM. 3) sp_names: a
vector of species names. 4) the grid area used in the simulation. 5) Non NA
cell (pixel) IDs.
An object of class community_bam
.
Steps in the simulation object to be converted into a PAM
Luis Osorio-Olvera & Jorge Soberón
For details about the object community_sim see
community_sim
SoberonOsoriobamm.
# \donttest{
lagos_path <- system.file("extdata/conejos",
package = "bamm")
enm_path <- list.files(lagos_path,
pattern = ".tif",
full.names = TRUE)[seq(1,10)]
en_models <- raster::stack(enm_path)
ngbs_vect <- sample(1:2,replace = TRUE,
size = raster::nlayers(en_models))
init_coords <- read.csv(file.path(lagos_path,
"lagos_initit.csv"))[seq(1,10),]
nsteps <- 10
sdm_comm <- bamm::community_sim(en_models = en_models,
ngbs_vect = ngbs_vect,
init_coords = init_coords,
nsteps = nsteps,
threshold = 0.1)
pamt10 <- bamm::csim2pam(community_sim = sdm_comm ,
which_steps = 10)
pams <- bamm::csim2pam(community_sim = sdm_comm ,
which_steps = seq_len(10))
rich_pam <- bamm::pam2richness(pams,which_steps = c(1,5))
print(rich_pam)
# }
Run the code above in your browser using DataLab