Learn R Programming

bapred (version 0.2)

svabaaddon: Addon batch effect adjustment using frozen SVA

Description

Performs addon batch effect adjustment using frozen SVA. Takes the output of performing svaba on a training data set and new batch data and correspondingly adjusts the test data to better match the adjusted training data according to the SVA model.

Usage

svabaaddon(params, x)

Arguments

params
object of class svatrain. Contains parameters necessary for addon batch effect adjustment with frozen SVA.
x
matrix. The covariate matrix of the new data. Observations in rows, variables in columns.

Value

  • The adjusted covariate matrix of the test data.

References

Leek, J. T., Storey, J. D. (2007) Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis. PLoS Genetics, 3, 1724--1735. Parker, H. S., Bravo, H. C., Leek, J. T. (2014) Removing batch effects for prediction problems with frozen surrogate variable analysis. PeerJ, 2, e561.

Examples

Run this code
data(autism)

# Random subset of 150 variables:
set.seed(1234)
Xsub <- X[,sample(1:ncol(X), size=150)]

# In cases of batches with more than 20 observations
# select 20 observations at random:
subinds <- unlist(sapply(1:length(levels(batch)), function(x) {
  indbatch <- which(batch==x)
  if(length(indbatch) > 20)
    indbatch <- sort(sample(indbatch, size=20))
  indbatch
}))
Xsub <- Xsub[subinds,]
batchsub <- batch[subinds]
ysub <- y[subinds]



trainind <- which(batchsub %in% c(1,2))

Xsubtrain <- Xsub[trainind,]
ysubtrain <- ysub[trainind]
batchsubtrain <- factor(as.numeric(batchsub[trainind]), levels=c(1,2))


testind <- which(batchsub %in% c(3,4))

Xsubtest <- Xsub[testind,]
ysubtest <- ysub[testind]

batchsubtest <- as.numeric(batchsub[testind])
batchsubtest[batchsubtest==3] <- 1
batchsubtest[batchsubtest==4] <- 2
batchsubtest <- factor(batchsubtest, levels=c(1,2))



params <- svaba(x=Xsubtrain, y=ysubtrain, batch=batchsubtrain)

Xsubtestaddon <- svabaaddon(params, x=Xsubtest)

Run the code above in your browser using DataLab