Learn R Programming

bartBMA (version 1.0)

varImpScores: Variable importances as defined by Hernandez et al. (2018)

Description

This measure defines the importance of a variable as the model-probability weighted sum of the number of splits on the variable of interest, divided by the sum over all variables of such weighted counts of splits.

Usage

varImpScores(object)

Arguments

object

A bartBMA object obtained using the barBMA function.

Value

A vector of variable importances. The variables are ordered in the same order that they occur in columns of the input covariate matrix used to obtain the input bartBMA object.

Examples

Run this code
# NOT RUN {
#set the seed
set.seed(100)
#simulate some data
N <- 100
p<- 100
epsilon <- rnorm(N)
xcov <- matrix(runif(N*p), nrow=N)
y <- sin(pi*xcov[,1]*xcov[,2]) + 20*(xcov[,3]-0.5)^2+10*xcov[,4]+5*xcov[,5]+epsilon
epsilontest <- rnorm(N)
xcovtest <- matrix(runif(N*p), nrow=N)
ytest <- sin(pi*xcovtest[,1]*xcovtest[,2]) + 20*(xcovtest[,3]-0.5)^2+10*xcovtest[,4]+
  5*xcovtest[,5]+epsilontest

#Train the object 
bart_bma_example <- bartBMA(x.train = xcov,y.train=y,x.test=xcovtest,zero_split = 1, 
                            only_max_num_trees = 1,split_rule_node = 0)
#Obtain the variable importances
varImpScores(bart_bma_example)
# }

Run the code above in your browser using DataLab