Rdocumentation
powered by
Learn R Programming
bartMachine (version 1.4)
Bayesian Additive Regression Trees
Description
An advanced implementation of Bayesian Additive Regression Trees with expanded features for data analysis and visualization.
Copy Link
Link to current version
Version
Version
1.4
1.3.4.1
1.3.4
1.3.3.1
1.3.3
1.3.2
1.3
1.2.7
1.2.6
1.2.5.1
1.2.5
1.2.4.2
1.2.4.1
1.2.4
1.2.3
1.2.2
1.2.1
1.2.0
1.1.1
1.0.4
1.0.2
1.0.1
Install
install.packages('bartMachine')
Monthly Downloads
6,031
Version
1.4
License
GPL-3
Maintainer
Adam Kapelner
Last Published
January 17th, 2026
Functions in bartMachine (1.4)
Search all functions
interaction_investigator
Explore Pairwise Interactions in BART Model
get_var_props_over_chain
Get the Variable Inclusion Proportions
cov_importance_test
Importance Test for Covariate(s) of Interest
dummify_data
Dummify Design Matrix
get_var_counts_over_chain
Get the Variable Inclusion Counts
investigate_var_importance
Explore Variable Inclusion Proportions in BART Model
predict.bartMachine
Make a prediction on data using a BART object
node_prediction_training_data_indices
Gets node predictions indices of the training data for new data.
plot_y_vs_yhat
Plot the fitted Versus Actual Response
linearity_test
Test of Linearity
get_projection_weights
Gets Training Sample Projection / Weights
pd_plot
Partial Dependence Plot
plot_convergence_diagnostics
Plot Convergence Diagnostics
print.bartMachine
Summarizes information about a
bartMachine
object.
predict_bartMachineArr
Make a prediction on data using a BART array object
rmse_by_num_trees
Assess the Out-of-sample RMSE by Number of Trees
set_bart_machine_num_cores
Set the Number of Cores for BART
var_selection_by_permute
Perform Variable Selection using Three Threshold-based Procedures
summary.bartMachine
Summarizes information about a
bartMachine
object.
var_selection_by_permute_cv
Perform Variable Selection Using Cross-validation Procedure
k_fold_cv
Estimate Out-of-sample Error with K-fold Cross validation
bartMachineArr
Create an array of BART models for the same data.
bartMachineCV
Build BART-CV
bartMachine
Build a BART Model
bartMachine-package
bartMachine: Bayesian Additive Regression Trees
bart_machine_get_posterior
Get Full Posterior Distribution
bart_machine_num_cores
Get Number of Cores Used by BART
benchmark_datasets
benchmark_datasets
bart_predict_for_test_data
Predict for Test Data with Known Outcomes
calc_credible_intervals
Calculate Credible Intervals
automobile
Data concerning automobile prices.
check_bart_error_assumptions
Check BART Error Assumptions
calc_prediction_intervals
Calculate Prediction Intervals
extract_raw_node_data
Gets Raw Node data
get_sigsqs
Get Posterior Error Variance Estimates