Learn R Programming

bartXViz (version 1.0.8)

waterfall_plot: Waterfall Plot

Description

The waterfall_plot function is a bar chart that displays the positive and negative contributions across sequential data points, visualizing how each variable's contributions change for a single observation.

Usage

waterfall_plot(
  object,
  obs_num = NULL,
  title = NULL,
  geo.unit = NULL,
  geo.id = NULL,
  obs_name = NULL
)

Value

The function returns a waterfall plot.

plot_out

The waterfall plot of the observation at index obs_num.

Arguments

object

Enter the name of the object that contains the model's contributions and results obtained using the Explain function.

obs_num

observation number (only one)

title

plot title

geo.unit

The name of the stratum variable in the BARP model as a character.

geo.id

Enter a single value of the stratum variable as a character.

obs_name

Enter the name of the vector containing observation IDs or names.

Examples

Run this code
# \donttest{
## Friedman data
set.seed(2025)
n <- 200
p <- 5
X <- data.frame(matrix(runif(n * p), ncol = p))
y <- 10 * sin(pi* X[ ,1] * X[,2]) +20 * (X[,3] -.5)^2 + 10 * X[ ,4] + 5 * X[,5] + rnorm(n)

## Using dbarts 
model <- dbarts::bart (X, y, keeptrees = TRUE, ndpost = 200)

# prediction wrapper function
pfun <- function (object, newdata) {
 predict(object, newdata)
 }
 
# Calculate shapley values
model_exp <-  Explain(model, X = X, pred_wrapper=pfun)

# Waterfall plot of 100th observation
waterfall_plot(model_exp, obs_num=100) 
# }

Run the code above in your browser using DataLab