# NOT RUN { require(stats); require(graphics) n <- 10; nn <- 100 g <- factor(round(n * runif(n * nn))) x <- rnorm(n * nn) + sqrt(as.numeric(g)) xg <- split(x, g) boxplot(xg, col = "lavender", notch = TRUE, varwidth = TRUE) sapply(xg, length) sapply(xg, mean) ### Calculate 'z-scores' by group (standardize to mean zero, variance one) z <- unsplit(lapply(split(x, g), scale), g) # or zz <- x split(zz, g) <- lapply(split(x, g), scale) # and check that the within-group std dev is indeed one tapply(z, g, sd) tapply(zz, g, sd) ### data frame variation ## Notice that assignment form is not used since a variable is being added g <- airquality$Month l <- split(airquality, g) l <- lapply(l, transform, Oz.Z = scale(Ozone)) aq2 <- unsplit(l, g) head(aq2) with(aq2, tapply(Oz.Z, Month, sd, na.rm = TRUE)) ### Split a matrix into a list by columns ma <- cbind(x = 1:10, y = (-4:5)^2) split(ma, col(ma)) split(1:10, 1:2) # }
Run the code above in your browser using DataCamp Workspace