# \donttest{
# Data dimensions
N <- 600
P <- 4
K <- 5
B <- 7
# Generating model parameters
mean_dist <- 2.25
batch_dist <- 0.3
group_means <- seq(1, K) * mean_dist
batch_shift <- rnorm(B, mean = batch_dist, sd = batch_dist)
std_dev <- rep(2, K)
batch_var <- rep(1.2, B)
group_weights <- rep(1 / K, K)
batch_weights <- rep(1 / B, B)
dfs <- c(4, 7, 15, 60, 120)
my_data <- generateBatchData(
N,
P,
group_means,
std_dev,
batch_shift,
batch_var,
group_weights,
batch_weights,
type = "MVT",
group_dfs = dfs
)
X <- my_data$observed_data
true_labels <- my_data$group_IDs
fixed <- my_data$fixed
batch_vec <- my_data$batch_IDs
alpha <- 1
initial_labels <- generateInitialLabels(alpha, K, fixed, true_labels)
# Sampling parameters
R <- 1000
thin <- 25
burn <- 100
n_chains <- 2
# Density choice
type <- "MVT"
# MCMC samples and BIC vector
mcmc_outputs <- runMCMCChains(
X,
n_chains,
R,
thin,
batch_vec,
type,
initial_labels = initial_labels,
fixed = fixed
)
ensemble_mod <- predictFromMultipleChains(mcmc_outputs, burn)
# }
Run the code above in your browser using DataLab