# \donttest{
# priors
mu_prior <- b_prior(family="normal", pars=c(0, 100))
sigma_prior <- b_prior(family="uniform", pars=c(0, 500))
lambda_prior <- b_prior(family="uniform", pars=c(0.05, 5))
# attach priors to relevant parameters
priors <- list(c("mu_m", mu_prior),
c("sigma_m", sigma_prior),
c("mu_s", sigma_prior),
c("sigma_s", sigma_prior),
c("mu_l", lambda_prior),
c("sigma_l", sigma_prior))
# subjects
s <- rep(1:5, 20)
# generate data and fit
rt1 <- emg::remg(100, mu=10, sigma=1, lambda=0.4)
fit1 <- b_reaction_time(t=rt1, s=s, priors=priors, chains=1)
rt2 <- emg::remg(100, mu=10, sigma=2, lambda=0.1)
fit2 <- b_reaction_time(t=rt2, s=s, priors=priors, chains=1)
rt3 <- emg::remg(100, mu=20, sigma=2, lambda=1)
fit3 <- b_reaction_time(t=rt3, s=s, priors=priors, chains=1)
rt4 <- emg::remg(100, mu=15, sigma=2, lambda=0.5)
fit4 <- b_reaction_time(t=rt4, s=s, priors=priors, chains=1)
# fit list
fit_list <- list(fit2, fit3, fit4)
# a short summary of fitted parameters
summary(fit1)
# a more detailed summary of fitted parameters
print(fit1)
show(fit1)
# plot the fitted distribution against the data
plot(fit1)
plot_fit(fit1)
# plot the fitted distribution against the data,
# plot on the top (group) level
plot(fit1, subjects=FALSE)
plot_fit(fit1, subjects=FALSE)
# traceplot of the fitted parameters
plot_trace(fit1)
# extract parameter values from the fit
parameters <- get_parameters(fit1)
# extract parameter values on the bottom (subject) level from the fit
subject_parameters <- get_subject_parameters(fit1)
# compare means between two fits, use a rope interval
compare_means(fit1, fit2=fit2, rope=0.5)
# compare means between two fits,
# use only the mu parameter of the exponentially modified gaussian distribution
compare_means(fit1, fit2=fit2, par="mu")
# compare means between multiple fits
compare_means(fit1, fits=fit_list)
# visualize difference in means between two fits,
# specify number of histogram bins and rope interval
plot_means_difference(fit1, fit2=fit2, bins=20, rope=0.5)
# visualize difference in means between two fits,
# use only the mu parameter of the exponentially modified gaussian distribution
plot_means_difference(fit1, fit2=fit2, par="mu")
# visualize difference in means between multiple fits
plot_means_difference(fit1, fits=fit_list)
# visualize means of a single fit
plot_means(fit1)
# visualize means of two fits
plot_means(fit1, fit2=fit1)
# visualize means of two fits,
# use only the mu parameter of the exponentially modified gaussian distribution
plot_means(fit1, fit2=fit2, par="mu")
# visualize means of multiple fits
plot_means(fit1, fits=fit_list)
# draw samples from distributions underlying two fits and compare them,
# use a rope interval
compare_distributions(fit1, fit2=fit2, rope=0.5)
# draw samples from distributions underlying multiple fits and compare them
compare_distributions(fit1, fits=fit_list)
# visualize the distribution underlying a fit
plot_distributions(fit1)
# visualize distributions underlying two fits
plot_distributions(fit1, fit2=fit2)
# visualize distributions underlying multiple fits
plot_distributions(fit1, fits=fit_list)
# visualize difference between distributions underlying two fits,
# use a rope interval
plot_distributions_difference(fit1, fit2=fit2, rope=0.05)
# visualize difference between distributions underlying multiple fits
plot_distributions_difference(fit1, fits=fit_list)
# }
Run the code above in your browser using DataLab