# \donttest{
# priors
p_prior <- b_prior(family = "beta", pars = c(1, 1))
tau_prior <- b_prior(family = "uniform", pars = c(0, 500))
# attach priors to relevant parameters
priors <- list(
c("p", p_prior),
c("tau", tau_prior)
)
# subjects
s <- rep(1:5, 20)
# generate data and fit
data1 <- rbinom(100, size = 1, prob = 0.6)
fit1 <- b_success_rate(r = data1, s = s, priors = priors, chains = 1)
data2 <- rbinom(100, size = 1, prob = 0.1)
fit2 <- b_success_rate(r = data2, s = s, priors = priors, chains = 1)
data3 <- rbinom(100, size = 1, prob = 0.5)
fit3 <- b_success_rate(r = data3, s = s, priors = priors, chains = 1)
data4 <- rbinom(100, size = 1, prob = 0.9)
fit4 <- b_success_rate(r = data4, s = s, priors = priors, chains = 1)
# fit list
fit_list <- list(fit2, fit3, fit4)
# a short summary of fitted parameters
summary(fit1)
# a more detailed summary of fitted parameters
print(fit1)
show(fit1)
# plot the fitted distribution against the data
plot(fit1)
plot_fit(fit1)
# plot the fitted distribution against the data,
# plot on the top (group) level
plot(fit1, subjects = FALSE)
plot_fit(fit1, subjects = FALSE)
# traceplot of the fitted parameters
plot_trace(fit1)
# extract parameter values from the fit
parameters <- get_parameters(fit1)
# extract parameter values on the bottom (subject) level from the fit
subject_parameters <- get_subject_parameters(fit1)
# compare means between two fits, use a rope interval
compare_means(fit1, fit2 = fit2, rope = 0.05)
# compare means between multiple fits
compare_means(fit1, fits = fit_list)
# visualize difference in means between two fits,
# specify number of histogram bins and rope interval
plot_means_difference(fit1, fit2 = fit2, bins = 40, rope = 0.05)
# visualize difference in means between multiple fits
plot_means_difference(fit1, fits = fit_list)
# visualize means of a single fit
plot_means(fit1)
# visualize means of two fits
plot_means(fit1, fit2 = fit2)
# visualize means of multiple fits
plot_means(fit1, fits = fit_list)
# draw samples from distributions underlying two fits and compare them,
# use a rope interval
compare_distributions(fit1, fit2 = fit2, rope = 0.05)
# draw samples from distributions underlying multiple fits and compare them
compare_distributions(fit1, fits = fit_list)
# visualize the distribution underlying a fit
plot_distributions(fit1)
# visualize distributions underlying two fits
plot_distributions(fit1, fit2 = fit2)
# visualize distributions underlying multiple fits
plot_distributions(fit1, fits = fit_list)
# visualize difference between distributions underlying two fits,
# use a rope interval
plot_distributions_difference(fit1, fit2 = fit2, rope = 0.05)
# visualize difference between distributions underlying multiple fits
plot_distributions_difference(fit1, fits = fit_list)
# }
Run the code above in your browser using DataLab