# simulate toy data just for cran-check purposes
set.seed(10)
n = 4
# censoring indicators
stat = rbinom(n, size = 1, prob = 0.5)
# covariates
x <- matrix(rnorm(2*n), n, 2)
# observed response variable
y <- rexp(n)
# define a data frame with the response and the covariates
my_data_frame <- data.frame(y, stat, x1 = x[,1], x2 = x[,2])
# run a weibull model with default prior setup
# considering 2 heated chains
fit1 <- cure_rate_MC3(survival::Surv(y, stat) ~ x1 + x2, data = my_data_frame,
promotion_time = list(family = 'exponential'),
nChains = 2,
nCores = 1,
mcmc_cycles = 3, sweep=2)
mySummary <- summary(fit1, burn = 0)
# plot the marginal posterior distribution of the first parameter in returned mcmc output
plot(fit1, what = 1, burn = 0)
Run the code above in your browser using DataLab