Learn R Programming

bayesGAM (version 0.0.2)

plot: Additional plotting for MCMC visualization and diagnostics.

Description

Marginal response smooth plot functions for parametric and nonparametric associations.

Usage

# S4 method for bayesGAMfit,missing
plot(x, y, applylink = TRUE, ...)

# S4 method for predictPlotObject,missing plot(x, y, ...)

# S4 method for posteriorPredictObject,missing plot(x, y, ...)

Arguments

x

an object of class hmclearn, usually a result of a call to mh or hmc

y

unused

applylink

logical to indicate whether the inverse link function should be applied to the plots

...

optional additional arguments to pass to the ggplot2

Value

A list of univariate and bivariate plots generated by plot functions based on ggplot2

References

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.

See Also

mcmc_plots

Examples

Run this code
# NOT RUN {
f <- bayesGAM(weight ~ np(height), data = women, 
              family = gaussian, iter=500, chains = 1)
plot(f)

# }

Run the code above in your browser using DataLab