data(LMEntryPaperData)
str(LMEntryPaperData)
# ===================== LMEntry Paper Data =================================
#rm(list=ls(all=TRUE))
# set working directory
curDir <- getwd()
if ( !file.exists("bayesMCClust-wd") ) dir.create("bayesMCClust-wd")
setwd("bayesMCClust-wd")
myOutfilesDir <- "LMEntry-Paper-Data-Outfiles"
# ==============================================================================
if (!is.element("LMEntryPaperData$covariates", search())) {
attach(LMEntryPaperData$covariates)
}
# ==============================================================================
groupNr <- 4
# ==============================================================================
if ( FALSE ) {
try(mcClustExtended( # parameter lists (all four) must be complete!!!
Data=list(dataFile=LMEntryPaperData$Njk.i,
storeDir=myOutfilesDir,
priorFile= LMEntryPaperData$mccXiPrior,
X = cbind( intercept=1, unEmplRDist, unskilled, skilled, whiteColl,
wageCat1Dummy, wageCat2Dummy, wageCat3Dummy,
wageCat4Dummy, wageCat5Dummy,
entryYear76, entryYear77, entryYear78,
entryYear79, entryYear80, entryYear81,
entryYear82, entryYear83, entryYear84,
entryYear85,
ia.ueRD.wc1D, ia.ueRD.wc2D, ia.ueRD.wc3D,
ia.ueRD.wc4D, ia.ueRD.wc5D
) ),
Prior=list(H=groupNr,
c=1,
cOff=1,
usePriorFile=TRUE,
xiPooled=TRUE,
N0=10,
betaPrior = "informative", # N(0,1)
betaPriorMean = 0,
betaPriorVar = 1),
Initial=list(xi.start.ind=3,
pers=0.7,
S.i.start = LMEntryPaperData$InitValClass,
Beta.start = LMEntryPaperData$InitValBetas ),
Mcmc=list(M=15000,
M0=10000,
mOut=500,
mSave=5000,
seed=3546541)
))
}
setwd(curDir)
if (is.element("LMEntryPaperData$covariates", search())) {
detach(LMEntryPaperData$covariates)
}
# ==============================================================================
Run the code above in your browser using DataLab