Learn R Programming

bayesRecon (version 0.2.0)

bayesRecon-package: bayesRecon: Probabilistic Reconciliation via Conditioning

Description

Provides methods for probabilistic reconciliation of hierarchical forecasts of time series. The available methods include analytical Gaussian reconciliation (Corani et al., 2021) tools:::Rd_expr_doi("10.1007/978-3-030-67664-3_13"), MCMC reconciliation of count time series (Corani et al., 2022) tools:::Rd_expr_doi("10.48550/arXiv.2207.09322"), Bottom-Up Importance Sampling (Zambon et al., 2022) tools:::Rd_expr_doi("10.48550/arXiv.2210.02286").

Arguments

Learn more

To learn more about bayesRecon, start with the vignettes: browseVignettes(package = "bayesRecon")

Main functions

The package implements reconciliation via conditioning for probabilistic forecasts of hierarchical time series. The main functions are

  • reconc_gaussian(): analytical reconciliation of Gaussian base forecasts;

  • reconc_BUIS(): reconciliation of any probabilistic base forecast via importance sampling; this is the recommended option for non-Gaussian base forecasts;

  • reconc_MCMC(): reconciliation of probabilistic discrete base forecasts via Markov Chain Monte Carlo.

Utility functions

  • temporal_aggregation(): temporal aggregation of a given time series object of class ts;

  • get_reconc_matrices(): aggregation and summing matrices for a temporal hierarchy of time series from user-selected list of aggregation levels.

Author

Maintainer: Dario Azzimonti dario.azzimonti@gmail.com (ORCID)

Authors:

References

Corani, G., Azzimonti, D., Augusto, J.P.S.C., Zaffalon, M. (2021). Probabilistic Reconciliation of Hierarchical Forecast via Bayes' Rule. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12459. Springer, Cham. tools:::Rd_expr_doi("10.1007/978-3-030-67664-3_13").

Corani, G., Azzimonti, D., Rubattu, N. (2023). Probabilistic reconciliation of count time series. tools:::Rd_expr_doi("10.1016/j.ijforecast.2023.04.003").

Zambon, L., Azzimonti, D. & Corani, G. (2024). Efficient probabilistic reconciliation of forecasts for real-valued and count time series. tools:::Rd_expr_doi("10.1007/s11222-023-10343-y").

Zambon, L., Agosto, A., Giudici, P., Corani, G. (2023). Properties of the reconciled distributions for Gaussian and count forecasts. tools:::Rd_expr_doi("10.48550/arXiv.2303.15135").