This function creates a list of tuning parameters used by the
pmmh function. The tuning choices are inspired by Pitt et al.
[2012] and Dahlin and Schön [2019].
default_tune_control(
pilot_proposal_sd = 0.5,
pilot_n = 100,
pilot_m = 2000,
pilot_target_var = 1,
pilot_burn_in = 500,
pilot_reps = 100,
pilot_resample_algorithm = c("SISAR", "SISR", "SIS"),
pilot_resample_fn = c("stratified", "systematic", "multinomial")
)A list of tuning control parameters.
Standard deviation for pilot proposals. Default is 0.5.
Number of pilot particles for particle filter. Default is 100.
Number of iterations for MCMC. Default is 2000.
The target variance for the posterior log-likelihood evaluated at estimated posterior mean. Default is 1.
Number of burn-in iterations for MCMC. Default is 500.
Number of times a particle filter is run. Default is 100.
The resample_algorithm used for the pilot
particle filter. Default is "SISAR".
The resampling function used for the pilot particle
filter. Default is "stratified".
M. K. Pitt, R. d. S. Silva, P. Giordani, and R. Kohn. On some properties of Markov chain Monte Carlo simulation methods based on the particle filter. Journal of Econometrics, 171(2):134–151, 2012. doi: https://doi.org/10.1016/j.jeconom.2012.06.004
J. Dahlin and T. B. Schön. Getting started with particle Metropolis-Hastings for inference in nonlinear dynamical models. Journal of Statistical Software, 88(2):1–41, 2019. doi: 10.18637/jss.v088.c02